
Deployable Prototype Documentation
Nurthin Aziz, Khalil Javed, Amarjit Singh, Paramvir Singh



1

CONTENTS

I Executive Summary 3

II Introduction 3

III Societal Problem 3

IV Design Idea Contract 4
IV-A Feature I: Collision Detection . . . . . . 4
IV-B Feature II: Collection Avoidance . . . . 5
IV-C Feature III: Tilt Awareness . . . . . . . 5
IV-D Feature IV: Step Detection . . . . . . . 5
IV-E Feature V: Event Notification . . . . . . 5
IV-F Feature VI: Mobile Application . . . . . 5

V Funding and Budget 6

VI Project Milestones 6

VII Work Breakdown Structure 6
VII-A Task Assignments . . . . . . . . . . . . 6

VII-A1 Collision Detection . . . . . 6
VII-A2 Collision Avoidance . . . . . 7
VII-A3 Step Detection . . . . . . . . 8
VII-A4 Tilt Detection (Incline) . . . 8
VII-A5 Event Notification . . . . . . 8

VIII Risk Assessment and Mitigation 8
VIII-A Risk One - Detection Objects . . . . . . 8
VIII-B Risk Two - Loss of Power to Motors . 8
VIII-C Risk Three - Step Detection Sensors

Blocked . . . . . . . . . . . . . . . . . 8
VIII-D Risk Four - Angle Calibration For Tilt

Awareness . . . . . . . . . . . . . . . . 9
VIII-E Risk Five - Notification Delay . . . . . 9

IX Design Overview 9

X Deployable Prototype Status 10
X-A Current Status . . . . . . . . . . . . . . 10
X-B Marketability Forecast . . . . . . . . . . 10

XI Conclusion 10

XII REFERENCES 11

XIII Glossary 11

Appendix A: User Manual 11
A-A Wheelchair . . . . . . . . . . . . . . . . 11

A-A1 Power Button . . . . . . . . 11
A-A2 Joystick Operation . . . . . . 11
A-A3 Automatic Braking . . . . . 11
A-A4 Automatic Alerts to Caregiver 12

A-B Touchscreen Control Panel . . . . . . . 12
A-B1 Indicators . . . . . . . . . . . 12
A-B2 Toggling Features . . . . . . 12

A-B3 Using the Emergency Button 12
A-B4 Sounds & Alerts . . . . . . . 13

A-C Mobile Application . . . . . . . . . . . 13
A-C1 Configuring the Wheelchair . 13
A-C2 Connecting to the Network . 13
A-C3 Connection Status Indicator . 13
A-C4 Enabling & Disabling Features 13
A-C5 Updating Emergency Phone

Number . . . . . . . . . . . 13
A-C6 Locating the Wheelchair . . 13
A-C7 Disconnect from the

Wheelchair Network . . . . . 13
A-C8 Locate the Wheelchair . . . 14

A-D Troubleshooting . . . . . . . . . . . . . 14
A-D1 I Cannot Locate the

Wheelchair . . . . . . . . . . 14
A-D2 The Location is Not Updating 14

Appendix B: Hardware 15

Appendix C: Software 15

Appendix D: Mechanical 15

Appendix E: Vendor Contacts 15

Appendix F: Resumes 15

LIST OF FIGURES

1 Possibility and Future of Smart Powered
Wheelchairs . . . . . . . . . . . . . . . . . . . . 3

2 Possibility and Future of Smart Powered
Wheelchairs . . . . . . . . . . . . . . . . . . . . 4

3 High Level Work Breakdown Structure . . . . . 7
4 Inner Workings of the Motor that will be used [7] 11
5 Emergency SMS sent with longitude and latitude 12
6 Touchscreen GUI on Powered Wheelchair . . . . 12
7 Prompt message when emergency button is pressed 12
8 Message shown upon delivery of SMS . . . . . . 12
9 Collision detection alert screen . . . . . . . . . . 13
10 Mobile Application Icon . . . . . . . . . . . . . 13
11 Screens shown when configuring the wheelchair 14
12 Screens shown when locating the wheelchair . . 14
13 System Wiring Diagram . . . . . . . . . . . . . . 16
14 System Software Diagram . . . . . . . . . . . . . 18
15 Pseudocode For Collision Detection Page 1 . . . 19
16 Pseudocode For Collision Detection Page 2 . . . 20
17 Pseudocode For Collision Detection Page 3 . . . 21
18 Pseudocode For Motor Controls Page 1 . . . . . 22
19 Pseudocode For Motor Controls Page 2 . . . . . 23
20 Pseudocode For Motor Controls Page 3 . . . . . 24
21 Pseudocode For Motor Controls Page 4 . . . . . 25
22 Pseudocode For Motor Controls Page 5 . . . . . 26
23 Pseudocode For Motor Controls Page 6 . . . . . 27
24 Pseudocode For Tilt Page 1 . . . . . . . . . . . . 28
25 Pseudocode For Tilt Page 2 . . . . . . . . . . . . 29
26 Pseudocode For Tilt Page 3 . . . . . . . . . . . . 30



2

27 Pseudocode For Mobile App & Event Notifica-
tion Page 1 . . . . . . . . . . . . . . . . . . . . . 31

28 Pseudocode For Mobile App & Event Notifica-
tion Page 2 . . . . . . . . . . . . . . . . . . . . . 32

29 Pseudocode For Mobile App & Event Notifica-
tion Page 3 . . . . . . . . . . . . . . . . . . . . . 33

30 Pseudocode For Mobile App & Event Notifica-
tion Page 4 . . . . . . . . . . . . . . . . . . . . . 34

31 Pseudocode For Mobile App & Event Notifica-
tion Page 5 . . . . . . . . . . . . . . . . . . . . . 35

32 Pseudocode For Mobile App & Event Notifica-
tion Page 6 . . . . . . . . . . . . . . . . . . . . . 36

33 Pseudocode For Mobile App & Event Notifica-
tion Page 7 . . . . . . . . . . . . . . . . . . . . . 37

34 Pseudocode For Mobile App & Event Notifica-
tion Page 8 . . . . . . . . . . . . . . . . . . . . . 38

35 Pseudocode For Mobile App & Event Notifica-
tion Page 9 . . . . . . . . . . . . . . . . . . . . . 39

36 Pseudocode For Mobile App & Event Notifica-
tion Page 10 . . . . . . . . . . . . . . . . . . . . 40

37 Pseudocode For Mobile App & Event Notifica-
tion Page 11 . . . . . . . . . . . . . . . . . . . . 41

38 Pseudocode For Mobile App & Event Notifica-
tion Page 12 . . . . . . . . . . . . . . . . . . . . 42

39 Pseudocode For Mobile App & Event Notifica-
tion Page 13 . . . . . . . . . . . . . . . . . . . . 43

40 Pseudocode For Mobile App & Event Notifica-
tion Page 14 . . . . . . . . . . . . . . . . . . . . 44

41 Pseudocode For Mobile App & Event Notifica-
tion Page 15 . . . . . . . . . . . . . . . . . . . . 45

42 Pseudocode For Mobile App & Event Notifica-
tion Page 16 . . . . . . . . . . . . . . . . . . . . 46

43 Pseudocode For Mobile App & Event Notifica-
tion Page 1 . . . . . . . . . . . . . . . . . . . . . 47

44 Pseudocode For Mobile App & Event Notifica-
tion Page 18 . . . . . . . . . . . . . . . . . . . . 48

45 Pseudocode For Mobile App & Event Notifica-
tion Page 19 . . . . . . . . . . . . . . . . . . . . 49

46 Pseudocode For Mobile App & Event Notifica-
tion Page 20 . . . . . . . . . . . . . . . . . . . . 50

47 Pseudocode For Mobile App & Event Notifica-
tion Page 21 . . . . . . . . . . . . . . . . . . . . 51

48 Pseudocode For Mobile App & Event Notifica-
tion Page 22 . . . . . . . . . . . . . . . . . . . . 52

49 Pseudocode For Mobile App & Event Notifica-
tion Page 23 . . . . . . . . . . . . . . . . . . . . 53

50 Pseudocode For Mobile App & Event Notifica-
tion Page 24 . . . . . . . . . . . . . . . . . . . . 54

51 Pseudocode For Mobile App & Event Notifica-
tion Page 25 . . . . . . . . . . . . . . . . . . . . 55

52 Pseudocode For Mobile App & Event Notifica-
tion Page 26 . . . . . . . . . . . . . . . . . . . . 56

53 Pseudocode For Mobile App & Event Notifica-
tion Page 27 . . . . . . . . . . . . . . . . . . . . 57

54 Pseudocode For Mobile App & Event Notifica-
tion Page 28 . . . . . . . . . . . . . . . . . . . . 58

55 Pseudocode For Mobile App & Event Notifica-
tion Page 29 . . . . . . . . . . . . . . . . . . . . 59

56 Pseudocode For Mobile App & Event Notifica-
tion Page 30 . . . . . . . . . . . . . . . . . . . . 60

57 Pseudocode For Mobile App & Event Notifica-
tion Page 31 . . . . . . . . . . . . . . . . . . . . 61

58 Pseudocode For Mobile App & Event Notifica-
tion Page 32 . . . . . . . . . . . . . . . . . . . . 62

59 Pseudocode For Mobile App & Event Notifica-
tion Page 33 . . . . . . . . . . . . . . . . . . . . 63

60 Mechanical Drawing For Box Cap . . . . . . . . 64
61 Mechanical Drawing For Bottom of Box Cap . . 65
62 Mechanical Drawing For Top of Screen Housing 66
63 Mechanical Drawing For Bottom of Screen Housing 67
64 Top Housing For Joystick . . . . . . . . . . . . . 68
65 Mechanical Drawing For Bottom of Screen Housing 69

LIST OF TABLES

I Material Costs . . . . . . . . . . . . . . . . . . . 6



Deployable Prototype Documentation
Khalil Javed, Nurthin Aziz, Amarjit Singh, and Paramvir Singh

California State University Sacramento
Sacramento, CA 95835

Abstract—A smart wheelchair is a powered wheelchair with
assistive technology such as computers and sensors. Although
automobiles have been using this assistive technology for collision
avoidance, lane detection, and self-driving capabilities, these
technologies have not been integrated on a large scale with
powered wheelchairs. This paper aims to guide the user into our
attempt at integrating these smart functionalities in the powered
wheelchairs of the future. We begin by reintroducing our societal
problem covering the Fall and Spring semester. Then move to our
design idea and the plans to integrate four major functionalities in
a working prototype: collision detection, collision avoidance, tilt
detection, and event notifications. We continue by outlining the
funding and budget leading into our work breakdown structure
and the mitigation steps we needed to take. Lastly, we give a
status report on our attempt at a deployable prototype as well
as our forecasts for marketability.

Index Terms—Smart wheelchair, power wheelchair, au-
tonomous wheelchair

I. EXECUTIVE SUMMARY

Wheelchair safety has become stagnant in terms of its
technological advancements to the typical households. In other
words, although there are safer wheelchairs out there, the
design isn’t marketed to the typical user. Our project idea
proposes a smarter, safer design aimed at keeping costs afford-
able to the average income household. Our societal problem
is such that wheelchairs are unsafe, many suffer from the
same problems whether powered or manual. These problems
are collision, tilting, falling, and lack of a notification to
the caregiver. From the surveys we’ve conducted, these are
what we believe to be the most desired by the wheelchair
community.

This documentation guides the user into our approach as
well as the cost breakdown and task breakdown to go from
an idea to implementation and finally testing for deployment.
This document also outlines the wiring required between
each device and finally the pseudocode to get started with
programming the controllers and sensors.

II. INTRODUCTION

Powered wheelchairs have expanded the range of possi-
bilities for many that were unable to move using traditional
wheelchairs. They have removed the need of another person
pushing them, allowing them to live a life of new found
independence. There is still however, a growing community
of people with motor and sensory impairments that need
additional assistance navigating through daily life.

While engineering advances, the realm of transportation
has been increasing at a rapid pace, the application of these
technologies aimed certain populations have been much more

Fig. 1. Possibility and Future of Smart Powered Wheelchairs

stagnant in terms of commercial application. The powered
wheelchair has not undergone much change from when it
was first revealed, though there have been some promising
research advances. Jesse Leaman and Hung M. La conducted
searches into these advances and produced the data in Figure 1
which outlines the possibility and future of the smart powered
wheelchair [1].

III. SOCIETAL PROBLEM

In the U.S. alone between 1.6 and 2.2 million Americans
rely on wheelchairs to assist with mobility impairment on a
daily basis [2]. A survey done in a disabled community shows
us that wheelchair users are among the most visible in public
streets., The roughly 2 million Americans utilizing manual
devices and approximately 155,000 using powered wheelchairs
often have functional limitations and activity restrictions. Dif-
ferent disability types may need different environmental sup-
ports to be successful and productive. Furthermore, wheelchair
users face more barriers and obstacles in their struggle to claim
back a normal lifestyle that some of us can take for granted.



4

Fig. 2. Possibility and Future of Smart Powered Wheelchairs

Out of the approximately 2.2 million wheelchair users in
America, more than 100,000 reports were made in 2003 related
to injuries treated in emergency departments, doubling the
number reported in 1991. The causes of wheelchair-related
accidents reported by the participants are summarized in
Figure 2 [4] Out of those, the most common activities reported
where an incident occurred was during transfer, operations on
ground level, driving up or down a hill, and reaching too far
forward causing the wheelchair to lean forward with them all
together. Accidents that happened during transfer of a patient
were usually caused by forgetting to set the brakes or caused
by a malfunction in the wheelchair; accidents caused while
navigating on hilly and ground levels were caused by uneven
or steep to climb surfaces or being hit by others as well as
hitting other obstacles [3, 4].

Among the 95 participants, 52 participants reported at least
one accident whether caused by the same fault or something
else. Of the 74 accidents reported by the 52 participants, it
was reported that tips and falls accounted for 87.8% accidents,
accidental contact 6.8%, and 5.4% dangerous operation.

Other wheelchair related problems experienced by our tar-
get audience can range from muscular impairments causing
trouble with navigation to hypo-activity causing slow reac-
tion times. People suffering from cerebral palsy or sluggish
cognitive tempo (SCT) will experience this regularly, making
it nearly impossible to become independent on their own.
There are alternative solutions that have been tested to help
with these issues such as thought control, pupil control, or
autonomy but the approach to the issue remains imperfect or
impractical and expensive for the average household budget.

Different disabilities require different care, with a few
requiring mobility aids for the disabled to get through their
daily tasks. Take for example someone with Parkinsons, their
general mobility and coordination is very limited due to their
condition. To give a very rough explanation, Parkinsons is
a type of movement disorder where symptoms can include:
trembling of hands, arms and legs; stiffness in their muscles;
slowness of movement and poor balance and coordination (or a
combination of it all)[5]. As these symptoms become worse,
patients may have difficulty walking, talking or completing
other daily tasks and may require a caregiver. There are

multiple disabilities that require a person to use a wheelchair
or any mobility aid. [6] Yet these aids are still the same as
once when they were invented. With todays technologies, there
are many ways we can make it easier for someone suffering
with these symptoms to be able to navigate without the worry
of the incidents mentioned in the societal problem.

A simple wheelchair is limited to its function, even a
powered wheelchair can only do so much. This is where smart
technologies need to come into play. With the integration
of smarter safety features, we can make these devices more
effective while keeping costs low for the average household
income.

IV. DESIGN IDEA CONTRACT

It used to be the case that safety provided by proximity
sensors and collision avoidance algorithms was only available
in luxury vehicles, yet we have seen these innovations trickle
down to more affordable cars in the past couple of years [7].
While engineering advances in the realm of transportation at
high speeds, the application of these technologies to special
populations have been much more stagnant in terms of com-
mercial application.

Our solution involves introducing proximity sensors, a gy-
roscopic sensor, a GPS/GSM module, and the microcontroller
and microcomputer to provide the safety functionality and
communication to hardware. The core idea is to connect a
microcontroller in between the wheelchair controls and the
computer. With the microcontroller acting as a middleman,
we can send/block the appropriate controls to the motor
depending on the state of the wheelchair. For our design idea,
we focused on making each individual feature to be modular,
easy to use and seamless to negate a single feature or multiple
among all features and functions. These key features include:
collision avoidance and detection, tilt and step prevention,
event notification and a user friendly mobile application.

A. Feature I: Collision Detection

The first feature on the list as a requirement to implement
what we believe to be the best solution towards making
wheelchairs safer is collision avoidance and collision detec-
tion. In relation to the project the collision detection feature
will directly interact with collision avoidance/motor control.



5

This is required to send the distance data to the motor
controller and the motor control can determine how hard to hit
the breaks depending on the distance of the object detected.
Our approach to implementing this feature into a powered
wheelchair requires us to do the following:

1) Have Priority control of navigation
2) Implement Kinect sensors to detect the distance between

the surrounding wheelchair and another object
3) Trigger an event call to a handler to either stop or slow

down the wheelchair in time before colliding with object
4) Re-enable the controls to the motor from the joystick

once the unsafe state is left

B. Feature II: Collection Avoidance

Feature two, STOP is a simple label for Collision Avoid-
ance. The purpose of this is to test the results when an animate
or inanimate object is within sight. The idea is that a minimum
threshold is set to give the user a wide enough circumference
for safety. In addition to this, it also provides the chair enough
time to avoidance imminent danger. In this case scenario if the
nearest point were to exceed this threshold an event handler
should be called.

C. Feature III: Tilt Awareness

Tilt awareness detects the uneven pavement of the ground
and when climbing up a steep pathway, ramps and curbs, the
sensor alerts the user if he or she is in danger of falling
backwards or tipping over to the side. Using the IMU we
can use both the gyroscope and accelerator to determine
certain slopes, which will help us map out the angle that the
wheelchair. If the angle is recorded to be in an unsafe state,
then we would log it as so and use those data points within
a conditional statement in software to handle the event when
triggered. If the wheelchair does come to an unsafe state, then
an alarm will be fired off notifying the user that the wheelchair
is on the edge of tilting or falling over. The level of danger
will be indicated on LCD display along with an audio for the
user to be cautious.

In greater detail, if the user surpasses certain threshold that
have been set proprietary, the sensor will send a signal to the
GUI, which will then display an alert symbol for the user. For
extreme cases, if the user happens to fall or gets tipped over
to the side, the sensor will send a signal to another Raspberry
Pi, which will then send a SMS to a caregiver.

1) Constantly check if user is in unsafe state
2) If Wheelchair tilts over proprietary threshold for roll in

either direction warn the user by displaying a notifica-
tion.

3) If the wheelchair tilts over completely in X or Y
direction, send notification.

D. Feature IV: Step Detection

Step detection is another feature that is for the safety of
the user. This feature will determine if there is a step or
steep decline in the path of the user and alert them and
stop the wheelchair, using the STOP function. This feature

is however a simple implementation, using only ultrasonic
sensors. This feature involves being able to detect and act upon
an immediate decline in the ground. This is from which ground
the motors are acting upon. If a decline is seen to be far greater
than allowable for the wheelchair to move forward, a middle
man should be able to act upon the travel of the wheelchair. We
can either warn the user and stop the wheelchair completely
or we could let them proceed on their own. This should all
happen though the Arduino which is already connected to the
motor controls.

1) Check for Step or steep decline
2) If Step is detected alert the user and stop the wheelchair.

E. Feature V: Event Notification

Event notification is one of the most critical features to
our project for a variety of reasons. The goal of our project
was to make a powered wheelchair safer and situationally
aware. In the unfortunate case that the user tips beyond the
fall threshold, it is imperative that someone is immediately
notified. Additionally, if the user is in trouble and is alone, they
should be able to send an alert to someone with the press of
a button. Lastly, we felt it was important to post a live stream
of GPS data so that the location of the powered wheelchair
user can be queried on demand.

Implementation of event notifications will require many
modules working together to seamlessly notify the guardian
of any accidents that may have occurred, this again can be
thrown into the handler routine function definition or called
as another subroutine giving the state the decision on choosing
whether to send a notification or not. The different sensors and
modules involve that have been accounted for are as follows:
To send out the notification to a guardian from far away we
would have to send out an SMS to them.

F. Feature VI: Mobile Application

The mobile application is another important feature to the
project as well because the user needs to be able to use it to
monitor the live GPS data that is posted by the wheelchair,
and to configure different options on the wheelchair (such as
the phone number to alert). The application would be used by
both the powered wheelchair user and possibly the caregiver
and family members as well to monitor the location of the
wheelchair. This is very important when locating the user
and enabling/disabling features according to the users specific
needs.

The one core element that weve seen with the latest
wheelchairs being manufactured today for the masses is that
comfort is the key. Wheelchairs have become an essential de-
vice with many individuals seeing them as a mobile assistant,
and to the many extreme cases theyve become the main source
of mobility. Our project tackles the problem of safety and
concern for all wheelchair users, whether they have cerebral
palsy, Parkinsons disease or have gotten into an accident. This
means putting in place features such as collision avoidance,
collision detection, step detection, tilt awareness and event
notification integrated in an app. Keeping this in mind also



6

TABLE I
MATERIAL COSTS

Date Item Cost
9/16/2017 FONA 808 GPS GSM module $50
9/16/2017 IoT Sim card $0.00
9/18/2017 2x 12v 35Ah Batteries $114.12
9/18/2017 Dual 25A Motor Driver $125.00
2/5/2018 BNO055 $35.00
9/30/2017 2x Kinect v1 $25.00
11/21/2017 28dB GPS Antenna (High power) $14.07
11/21/2017 SMA Female to uFL cable (antennas) $6.99
11/21/2017 12V to 5V Dual $7.99
TOTAL $378.17

means keeping costs reasonable and parts readily available to
the open market. Viable solutions are always readily available
today, but no realistic solution considers the costs and how it
affects its users. With the safety of our users being our biggest
priority, the implementation of remote navigation or extreme
comfort becomes secondary and not a functional requirement.

V. FUNDING AND BUDGET

Our team did not receive any additional funding from
outside resources making us stick to the goal of keeping things
affordable. Fortunately, a neighbor was kind enough to give
us theirs. The only issue was the powered wheelchair needed
new batteries. The batteries, rated 12V 35Ah, set us back $114
roughly, in other words we got a working powered wheelchair
for $114 and a few hours of our time to test and go through
any repairs. Considering the cost of old and used, this saved us
hundreds. Considering the cost of new, this saves us thousands.

With the center piece to our project now in our hands the
only other materials needed were a motor controller to over-
haul the current controller, the microcontroller to communicate
with it, the various sensors as required for our safety features,
and the micro computer to control it all. Parts for each of the
features, and the cost breakdown can be found in Table 1.

Though, major savings for this project came from already
owned equipment such as the microcontroller, wires, and
low cost ultrasonics; the overall cost of the project taking
everything into account whether purchased or pre-owned still
came down to about $378 as mentioned in the table.

VI. PROJECT MILESTONES

With consumer level products made to market, comes extra
work involved. In other words, you work for what you don’t
pay for. Example, some powered wheelchairs utilize the CAN-
Bus protocol allowing us to easily take control of the motors
without having needing to program. Taking a more cost
effective approach meant needing to program it, this became
the first major feat our team overcame. A list of all the major
features can be seen below:

1) Taking control of the motors
2) Integrating a Joystick
3) Event Notification Through GUI and SMS
4) Hardware Integration between all features
5) Wheelchair running on startup with all features

6) Software Stabilization
7) Remote configuration between App and GUI
8) Mitigation Steps

VII. WORK BREAKDOWN STRUCTURE

Though the concept of our features are simple to understand,
the implementation as always is the challenge. This section
illustrates the work breakdown structure (WBS) as seen in
Figure 3. The WBS guides our team to how each user will
be responsible for their feature as well as how to approach
their feature from researching, implementing, testing, and
deploying.

A. Task Assignments

1) Collision Detection:
a) Detect Object: With the Microsoft Kinect as our

sensor of choice for collision detection, the next step was
to actually attempt to connect the device to the connect.
Ultimately, this meant downloading libfreenect, an open source
driver for the Kinect, run an example code and begin the
learning process.

We learn from example, and from examples we can expand
on it with our own ideas. This was the biggest task to Collision
Detection, and every feature in fact. Because we’re not mod-
ifying any registers or overwriting the current firmware the
programming language of choice was Python. Though, if the
reader is so eagerly inclined the libfreenect libraries are also
available in C, Java, and ROS (not a programming language
but a development environment for robots).

At a high level to test the base functionality and determine
if this truly is the route the project will be taking we needed
to be able to do one important thing, start a depth stream.
Libfreenect supports this.

Since libfreenect can support reading the depth stream from
the Kinect we can read those raw values, the Kinect has a
640x480 resolution. It can also detect objects up to 20 feet
away, but realistically we will care for objects about 5 feet in
front of us.

Not a simple task as we’ll have to traverse the 2-D array of
rows and columns and determine what’s an object or not. The
approach to this in theory for our project will be to simple
say everything is a square and if that square object is close
enough to use, we call our collision avoidance handler.

Responsible: Nurthin Aziz
b) Tie into Collision Avoidance: With a working theory

in place testing needs to be done to tackle any issues not
accounted for. In order to test we’ll need to first integrate
this into collision avoidance. Collision avoidance and collision
detection are on two separate controllers due to the capabilities
of the Kinect. The Kinect will be talking from a Raspberry Pi
to the Arduino using I2C.

I2C is a serial protocol that allows up to communicate
between devices, the downfall to this is that because its serial
it only supports half-duplex. Half-duplex, means it can only
do one at a time, meaning reading and writing.



7

Situationally Aware Wheelchair

Senior Design Team 8 Fall 2017

Responsible Person: Amarjit SIngh
Feature 3 : Step Detection

Responsible Person: Amarjit Singh
Feature 2 : STOP (Collision Avoidance)

Responsible Person: Nurthin Aziz
Feature I : Collision Detection

Feature 1.1
Detect Object

Feature 1.2
Tie into Collision Avoidance

Feature 1.3

Mount to Chair

Feature 2.1
Control Motors with Joystick

Feature 2.2
Use Motor Controller to bypass System

Feature 2.3
Open API to Interact with Motors

Feature 3.1

Sense Decline

Feature 3.2

Act Upon Decline

Feature 1.4
Finalize and Fully Implement

Responsible Person: Paramvir Singh
Feature 4 : Incline

Responsible Person: Khalil Javed
Feature 5: Event Notification

Feature 4.1
Detecting Uneven Pavement

Feature 4.2

Sense Incline
Feature 5.2

Configure FONA & Command Set

Feature 5.3

Write Python Program

Feature 5.1
Enable Communication Link

Feature 5.4

Integration

Fig. 3. High Level Work Breakdown Structure

Responsible: Nurthin Aziz
c) Mount To Chair: Nothing special to the mounting,

though the spot of choice had to be overhead, unless and
armrest was to be implemented.

Responsible: Nurthin Aziz
d) Finalize and Integrate: This task is an ongoing task

set for the remainder of our time to prototype and deploy.
The tasks required for this involved everything was testing,
implementing, testing, and more implementing. A continuous
cycle until satisfied with the reliability of the product.

Responsible: Nurthin Aziz
2) Collision Avoidance:

a) Control Motors with Joystick: To be able to stop
or avoid an obstacle we need to be able to control the
motors. Bypassing the main system and using our own motoro
controller will alow such functionality. This controller should

allow interfacing using a microcontroller. Which in turn will
allow us to run the motors using code.

The work will be straight forward but time consuming. Intial
work is to get the motors to do any movement using a simple
code then work on directions. A sabretooth 2x25A v2 mtoro
controller will be used to accomplish this. This controller
is well documented and easy to find resources on. Arduino
microcontroller will be used to maker the motors move.

Responsible: Amarjit Singh

b) Use Motor Controller to bypass other systems: Most
important implementation in all this project is getting the
motors to run. If the wheelchair isn’t moving the user is
disabled whether medically or not. This feature should and
must work first. Using a motor controller that can directly
function with the motors and thus allowing us to control the
wheelchair with our own joystick.



8

Responsible: Amarjit Singh
c) Allow other features to interact with motors: This

function will give other features the ability to control aspects
of the motors to their needs. For example, when the collision
detection feature sends an alert to Arduino that its detected an
object, the motors should stop.

The code written needs to be open to allow other features to
interact with the motors. The other feature must send a signal
that can then be converted to something understandable by the
Arduino.

Responsible: Amarjit Singh
3) Step Detection:

a) Sense Decline: Implementing a sensor that can calcu-
late the distance between the bottom of the wheelchair and the
ground. This data should open at all times and communicating
the with motor controllers. The sensors used are ultrasonics
and does a transmit and receive to ping the distance of an
object in front of it. The distance is calculated based on the
round trip time taken.

Responsible: Amarjit Singh
b) Act On Decline:: If a decline is seen to be far

greater than allowable for the wheelchair to move forward,
a middle man should be able to act on the navigation of
the wheelchair. Since the Arduino will also house the step
detection, communication was seamless.

Responsible: Amarjit Singh
4) Tilt Detection (Incline):

a) Detection Uneven Pavement: Can detect any sense
of danger in the pavement and able to send the differences
between surfaces in real time to notify the user.

To get the best data result, this sensor will be in the center
of the chair to take data points for the wheelchair to be in
unstable angle. This will ensure that whenever there is a tilt
on the wheelchair, the sensor will be able to find the distance
between ground and the wheelchairs wheels.

Responsible: Paramvir Singh
b) Sensing the incline: Once on an incline street or

pathway, the sensor will pick up if it is safe to move forward
or send signal to the microcontroller for being in an unsafe
state.

Responsible: Paramvir Singh
5) Event Notification:

a) Enable Communication Link: The goal of this step is
to ensure the Raspberry Pi 3 and FONA 808 can successfully
send/receive data to each other. This involved soldering pins
and sending data over a serial to USB connector.

This feature begins by researching the required materials
for the Raspberry Pi 3 and FONA 808 to perform their tasks.
There are battery packs, GSM antennas, GPS antennas, and
USB to serial cables that need to be ordered; however, there
are many optiosn for these parts and the goal is to determine
the equipment that’s cost effective and performs the best.

Responsible: Khalil Javed
b) Configure FONA & Learn Command Set: The goal of

this step is to get the SIM card registered and working with

the FONA. Following this we will learn about the command
set the FONA uses to communicate.

Responsible: Khalil Javed
c) Writing Python Program: This step builds the foun-

dation for our feature by creating a Python scrip that sends a
text message to a pre-programmed phone number. This will
involve the AT commands learned in the previous task to set
up a serial connection with the FONA. Following this we can
then begin to parse GPS data and play with SMS messaging.

Responsible: Khalil Javed
d) Integration: Finally, the integration of event notifica-

tion as it stands with all other features, namely tilt awareness.
Because the two features are tied together they must have a
communication link of their own. From their we can determine
the best place, with little noise, and determine the power
source required when integrating into the wheelchair.

The rest of this task carries on to the end of the project until
satisfied with the results.

Responsible: Khalil Javed

VIII. RISK ASSESSMENT AND MITIGATION

A. Risk One - Detection Objects

When dealing with safety features the impact of a risk is
high therefore mitigation plans need to be put in place to
ensure the likelihood of that event is small.

This risk begins with collision detection. The biggest chal-
lenge to collision detection has been the simplest concept
to understand. Detect an object and calculate the distance
between it and you. Concept is simple but against implemen-
tation is the challenge.

The likelihood of this risk as it stands now is likely, and
the risk can be major. The reason for its likelihood is due to
the complexity of needing to traverse the depths stream when
read from the connect. A simple for-loop to traverse the rows
and columns cause too much overhead.

The mitigation plan for this risk will be to set the threshold
between the object and the wheelchair user. Furthermore, the
ability to turn on and off the event notification during times
of unreliability will be a must or simply just wanting to freely
roam or push boxes around.

B. Risk Two - Loss of Power to Motors

This risk doesn’t involve the batteries dying the the user not
capable of moving around, it should always be the responsi-
bility of the user to charge the batteries.

This risk is involved with a disconnection to the batteries.
The likelihood that this risk can happen is high, a major risk
that must be handled with importance. A way to handle this is
to make sure that all connections are secure and reliable. Test
the motors before installation, protect the motor controller and
have it covered if possible.

C. Risk Three - Step Detection Sensors Blocked

In the case of step detection, if any of the sensors are
blocked due to a rock or a small object we can quickly imagine
the wheelchair coming to an abrupt stop wondering why. The



9

likelihood of this risk is likely, but the impact is very minor.
No mitigation plan is necessary, as the user can just backup.

D. Risk Four - Angle Calibration For Tilt Awareness

Needing to calibrate the gyroscope was a big issue we
needed to overcome. The likelihood was likely and the impact
or severity can be serious. There was a simple solution to this,
get a better gyroscope. The MPU6050 was a cheap solution at
first to test the waters, and now with our feet wet we needed
an upgrade to the BNO055.

E. Risk Five - Notification Delay

This risk can occur if the GPS antennas have not been
intialized correctly, so there needs to be safe measured put
in place. Programmatically, we plan to implement these safe
measures whic include 2 GPS query retires followed by a
toggling of the GPS module and another set of retries. If the
system is still unable to grab the coordinates, the caregiver
will still be notified of the event.

IX. DESIGN OVERVIEW

A wheelchair that is aware of its situation. This statement
is what drove us into creating a system in which we can
use various sensors to detect and react to an event that has
occurred. The use of cost effective sensors was a big objective
of ours, as it would allow us to produce a product cheaper
than many alternatives available in the market with similar
features. The answer to why would one want a situationally
aware wheelchair is where our societal problem comes in play.
There are Powered Wheelchair (PW) users that are older or
have conditions such as cerebral palsy or multiple sclerosis
which affect reaction time and motor control. Keeping this
in mind, features from our system would be welcomed in
the wheelchair community as there is a strong need for
this functionality. The powered wheelchair has not undergone
much change since it was revealed decades ago. To overcome
this stagnant progression in PW safety, our design idea fo-
cused on collision avoidance and detection, step detection, tilt
awareness, GPS tracking, SMS for event notifications, and a
mobile application to personalize the wheelchair to the user.

Having a smart system on the wheelchair could help these
user in their daily routine. As most users suffering from the
conditions mentioned need a caregiver most of the day, this
make it hard for these users to be able to travel alone leaving
them less inclined to enjoy life outside. Our system features
would work together to act in the situation where the caregiver
normally would, but for reasons X, Y, or Z can’t.

Our design was derived from the need in the current PW and
what it was lacking in standalone safety features. We looked
at the areas in which the PW was found in an accident and
from these issues we sought out technologies that could be
used to avoid or mitigate the risks involved.

Alternatively, there are other ways people have been tack-
ling this issue, but fall short. For example, during our research
we saw products such as exoskeletons and bionic helper limbs.
These products are meant to bring full autonomous navigation

or full support to joints and limbs to the user but fall short
due to the limited production and cost per unit. Therefore, our
team has picked a design and sought out to create a product
that would be an attachment to the current users powered
wheelchair rather than needing to make another purchase.

So, you might be asking, what are these features and what
do they do? Let us begin with the key feature on which every
other feature is dependent, motor controls. Wait doesn’t the
PW already have motor controls, isn’t that how it works? Yeah,
the PW does have motor controls but do the motor controls that
are already implemented work with our feature sets, nope. That
is why for our design the team had to figure out how we would
tap into the motors so that we can imply our own controls on
the entire system. By making use of a programmable motor
controller we could use the wheelchair motors and have them
operate as we would prefer.

1) Control wheelchair movement by external joystick.
2) Start and Stop wheelchair by will of other features.
3) Maneuver the wheelchair separate from user joystick

input.

Now with the understanding of the change in the motor
controller is mind let us focus briefly on the main features.
Starting with collision avoidance and collision detection, this
feature is designed as the eye for the visual situation around the
wheelchair. By taking the advance sensor sets of the Xbox 360
Kinect, we can cut out costs and receive data in accordance to
depth in the field of view of the wheelchair. This depth data
lets us map out the moves and events that can be triggered
is necessary at a given threshold. Additionally, to the eye
of the wheelchair we have step and curb detection, as the
Kinect is only able to map out the area in the foreground of
the wheelchair we need something that can look below the
wheelchair. Using ultrasonic sensor, as we only need small
data sets and short distances, we mount these on the bottom
and sides of the wheelchair. From the bottom ultrasonic we
map out the data directly beneath the wheelchair, whereas from
the sides it is from curb detection.

Now that we have a control of the environment in the form
of eyes, though the Kinect and the ultrasonic. We know need to
have a positioning understanding of the wheelchair, this could
be in the form of GPS and in the form of orientation/tilt. A
tilt sensor implementation, a sensor that knows the orientation
and the angle on which the wheelchair is operation at. Our
implementation is using a BNO055, this is a small compact
sensor that is more powerful than we need in our application.
An absolute orientation sensor, this can keep its orientation
even when not powered so calibration for this, on a basic
level, is not needed. Additional to the orientation system we
have a module that can determine the current location of
the wheelchair using a GPS system. The FONA module is a
cellular connective module that has on board GPS service, this
feature can be used to record the location of the wheelchair
and send its coordinates when a distress signal is sent. The
event notification system alerts the user of a triggered event
on the LCD screen of the wheelchair and if such an event



10

where to occur the system will use a FONA sensor to send a
text message, with recorded location from the FONA onboard
GPS, to a registered caregiver phone number.

Finally, to complete the needs of a smart wheelchair we
have the integration of a Mobile application platform and a
LCD with a user-friendly GUI on the wheelchair. With the
on-display GUI, from which the user can see a speed needle,
see their current speed setting, see a battery level, and most
importantly change the settings. This GUI lets the user interact
with which feature should be on and active or which feature
should be off as not needed. The screen also has a SOS button
if in any case the PW user needs to alert their caregiver in
any circumstance. The mobile application can be used to set
caregiver phone number, turn on or off settings as on the GUI,
and most importantly be able to queried the location of the
wheelchair when it is out and about thus allowing a caregiver
to check in and find out where the PW user is.

X. DEPLOYABLE PROTOTYPE STATUS

Our device is in a state that is super close to be able to
be deployed yet there are a few things that need work. As
this device is running from opensource microcontroller and
microcomputer that shuns us away from having a device that
can be launched with. Although these devices are meant for
rapid prototyping and if we can easily offload out code ontop
of a close knit system then we are ready to deploy. All feature
sets are in correct functional order and have been tested to be
working to their fullest, a few edge cases might be reaming
to knock out. Additionally the look of the system must be
considered before deployment, we can’t have wires all over
the place. So before a actually deployment the wires must be
routed and the devices such as the raspberry pi and the arduino
must be put into a closed housing so that they look clean and
non obtrusive.

A. Current Status

With Senior Design coming to a close, we need to assess
how much of our product is working according to expectation,
and how well we stuck to our problem statement. As stated
before the main goal of our design was to make the current
PW safer than what is already was. By adding sensors and
modules that would function around the wheelchair we could
monitor and react to possible collision events as needed.

Revisiting the features we have: Collision Detection and
Avoidance, Step and Curb detection, Tilt awareness, Event
notification and a Mobile application. These features have been
discussed and they work as expected yet, as nothing is perfect
we do have a few issues when it comes down to the Collision
Detection system. The avoidance feature is simple and smooth,
as it only needed a trigger event to make its action prominent.
As for the detection system it uses the Kinect module to scan
the frame and give back an alert if necessary this is where the
current issue lies.

This feature is complex, it requires taking in the entire
field of view of the Kinect, scanning the entire frame and
determining if an object is too close for safety. As of now

we are receiving the depth data and are able to use the frame
for reference, but the issues are the edge cases in which the
depths of some objects skews the entire depth being sent to the
motor controls causing misfire. The mitigation plan for this is
still in the works as a simple for-loop to scan everything will
require too much overhead, causing a delay in what is read
by the Arduino and what is seen by the Kinect. This is still
being worked on and will hopefully be mitigated, additionally
backup sensors such that of an ultra-sonics can be used to test
against for added data points.

The remaining features are working as indicated and they
have minimal to no edge cases or issues that can cause fault
in their current functionality. The tilt sensor is mounted on
a center point of the wheelchair to obtain a better and more
reliable degree of tilt. The ultrasonic are mounted in the front,
back, and sides. Furthermore, the GUI is fully functional and
intractable by the user, the alert events show up on the screen
as they are triggered, and audio alert system works as expected.

B. Marketability Forecast

Marketing is important when we are developing a product
or application for a group of people. We are not doing this as
a fun project for around the house use, in developing a system
to solve a societal problem we must understand the market and
how we can provide the product to our customers. In our case
as we are dealing with PW users who could use the added
safety measure to their current system, we must design a plug
and play system that the user can easily and readily use.

As of now the system is in a state in which it can not be
brought to market due to some minor prototyping concerns.
These concerns are simply how the system is built up on
a set of a microcontroller and microcomputer, Arduino and
Raspberry Pi respectively. These systems are good to allow
us to rapidly prototype our desing idea but must surely be
changed in allowing real world deployment. This is where
an embedded system comes into play, although we have our
system designed with a raspberry pi in mind when we deploy
we must move the entire codebase over to an embedded
system.

With an embedded system we have full rights to our product
and the parts on it, such that we can take full ownership of
the design. Additionally, the embedded system will have no
additional parts or functions that are not needed to the design
specification, as we see with the Raspbian software. This
will make boot times faster and thus make the entire system
enclosed and easy to use and install. But most importantly this
will knock out the remaining factor that is truly halting our
design to be launched and marketed.

XI. CONCLUSION

A wheelchair that is safer is a wheelchair that is trusted, for
decades the wheelchair has been a simple and straightforward
device. It helps the disabled, those that need it, get around
with ease. The powered wheelchair came along and made
getting around even easier but introduced potential dangers.
In our design we challenged these faults prone to a powered



11

wheelchair. The design of our safer wheelchair gives the user
Collision detection warnings and actions, it alerts and stop
them from going over a curb and most importantly send their
caregiver a SMS notification with the GPS coordinates if a
dangerous fault has occurred. Using multiple sensors, we can
determine faults and take actions upon them. By adding a
microcontroller, we setup states in which the wheelchair will
act if a certain data is detected. Thus, the wheelchair can now
successfully stop from a fall or collision and send an alert
message if the user does endure any harm. By adding graphical
user interface, we can alert the user of any reason of the stop
or show them of potential dangers.

The wheelchair is much safer than it would have been on
its own. Using these sensors, we have made the user of the
wheelchair feel safer when going out and experiencing the
world by themselves, not having to worry about faults from
the power wheelchair.

XII. REFERENCES

[1] Jesse Leaman, and Hung Manh La with a comprehensive
review and criteria for what would should be considered in the
future of Smart Wheelchair innovations and technology. In A
Comprehensive Review of Smart Wheelchairs: Past Present,
and Future, pages

[2] ”2012 Disability Status Report: United States.”
Disabilitystatistics.org, Disabilitystatistics, 2012,
www.disabilitystatistics.org/reports/2012/English/HTML/report
2012.cfm?fips=2000000&html year2̄012&subButtonḠet
%2BHTML.

[3] H XIANG-AM CHANY-G SMITH,
WHEELCHAIR RELATED INJURIES TREATED IN
US EMERGENCY DEPARTMENTS, 2006 FEB -
HTTPS://WWW.NCBI.NLM.NIH.GOV/PMC/ARTICLES
/PMC2563507/

[4] W. CHEN, Y. JANG, J. WANG AND Y. WANG,
”WHEELCHAIR-RELATED ACCIDENTS: RELATIONSHIP
WITH WHEELCHAIR- SING BEHAVIOR IN ACTIVE
COMMUNITY WHEELCHAIR USERS”, PUBMED, P. 1,
2011.

[5] ”Parkinson’s Disease — PD — Medline-
Plus”, Medlineplus.gov, 2018. [Online]. Available:
https://medlineplus.gov/parkinsonsdisease.html.

[6] 2012 Disability Status Report: United States.
Disabilitystatistics.org, Disabilitystatistics, 2012,
www.disabilitystatistics.org/reports/2012/English/HTML/report
2012.cfm?fips=2000000&html year2̄012&subButtonḠet
%2BHTML.

[7] I. Fletcher, B. J. B. Arden and C. S. Cox, ”Automatic
braking system control,” Proceedings of the 2003 IEEE In-

Fig. 4. Inner Workings of the Motor that will be used [7]

ternational Symposium on Intelligent Control, Houston, TX,
USA, 2003, pp. 411-414.

XIII. GLOSSARY

APPENDIX A
USER MANUAL

When considering the additional features we implemented
in our safer powered wheelchair, it was imperative to make
the entire system easy to learn and operate. Although the
joystick mechanism has been replaced, its function is similar
to any standard powered wheelchair. The additional features,
however, will be unfamiliar to new users. In this user guide,
we will be going over the touchscreen layout and the mobile
application, using both to highlight all features of our safer,
smarter wheelchair.

A. Wheelchair

1) Power Button: The wheelchair itself functions similarly
to a standard powered wheelchair in that it has a manual power
toggle located near the right armrest. This is used to turn the
wheelchair on or off. All smart functionality will turn on with
this button and it will take up to 30 seconds for a complete boot
up. During this time, the wheelchair is operational but smart
functionality will not be available until the user interface is
displayed on the screen.

2) Joystick Operation: The joystick also operates similarly
to a standard powered wheelchair. Moving the joystick for-
wards and backwards will ramp up acceleration and decelera-
tion respectively. Moving the joystick right and left will spin
the wheelchair right or left. The joystick is multidirectional
and can operate between the front, back, left, and right zones.

3) Automatic Braking: When using the powered
wheelchair, you may experience automatic braking in
certain scenarios in the default configuration. For example,
when the user approaches an obstacle, the wheelchair will
slow down to prevent a collision. Additionally, when the user
approaches a curb or a step, the wheelchair will also halt the



12

Fig. 5. Emergency SMS sent with longitude and latitude

motors before continuing. This behavior is expected and is
used to prevent accidents.

4) Automatic Alerts to Caregiver: Alerts to a caregiver
or any phone number configured are sent in the case of an
accident. The message is an SMS with an Google Maps
embedded link which smartphones will automatically convert
to a geographical location as seen in figure 5. Additionally,
this message can also be sent on demand if the user hits the
”help” button on the touchscreen gui.

B. Touchscreen Control Panel

Fig. 6. Touchscreen GUI on Powered Wheelchair

After the wheelchair boots up, you will be presented with
the control panel as seen in the top screenshot of figure 6.
See the key below for the items highlighted in the bottom
screenshot of figure 6:

1) Speedometer
2) Battery Indicator
3) Emergency Button
4) Sidebar

5) Collision Detection
6) Tilt Detection
7) GPS Tracking
8) Step Detection (off screen)

1) Indicators: The Speedometer shows the users speed
relative to the maximum output speed of the wheelchair. The
Battery Indicator shows the battery level of the powered
wheelchair and broken up into 5 states: 100%, 75%, 50%,
25%, and 10%. The wheelchair MUST be charged if under
10% as the motors will slow or stop soon afterwards.

2) Toggling Features: The Sidebar shows the entire feature
set for the powered wheelchair. The icons top to bottom are
Collision Detection, Tilt Detection, GPS Tracking, and Step
Detection. If the icon is bright, the feature is on, and if the
icon is dark, the feature is off. Tapping the icon turns the
selected feature on or off. If the selected feature is turned off,
the feature will be completely disabled and the user will not
receive any audio or video alert.

Fig. 7. Prompt message when emergency button is pressed

Fig. 8. Message shown upon delivery of SMS

3) Using the Emergency Button: The Emergency Button
located on the right should be used in case of an emergency.
When the button is pressed, the screen shown in figure 7 is
displayed, and prompts the user if he or she would like to send
an SMS to the emergency phone number configured. The user
will be notified when the SMS is sent as seen in figure 8. See
the user guide section for the Mobile Application to learn how
to configure an emergency phone number.



13

Fig. 9. Collision detection alert screen

4) Sounds & Alerts: This powered wheelchair is designed
to send the user visual and audio alerts in specific circum-
stances. These include: when a potential collision is detected,
when the user is about to drive over a curb or step, and when
the user is at risk of tipping over due to being at an unsafe tilt
angle. In these scenarios, the touchscreen interface will flash
with an alert such as the one seen in figure 9. The alert is
accompanied by a brief audio message notifying the user of
the event that occurred, or the action that was taken by the
wheelchair.

C. Mobile Application

Fig. 10. Mobile Application Icon

Along with the touchscreen the wheelchair user, or a care-
giver can remotely configure the powered wheelchair via an

Android application. This allows greater customization and
a user interface design that is similar to the touchscreen on
the wheelchair itself. All changes made on the application
are immediately updated on the wheelchairs control panel and
the wheelchair will play a contextual audio message when a
setting is updated.

1) Configuring the Wheelchair: The Smart Wheelchair
mobile application begins with a splash screen after which the
user is on the Configure Wheelchair page by default. Upon
pressing the button to connect, the application will take the
user to their settings where they will connect to the wheelchair
network and return to the application.

2) Connecting to the Network: Our powered wheelchair
emits a secure wireless network that is used to connect to the
wheelchair and apply any configuration changes. The network
is available as soon as the control panel is loaded after booting.
The WiFi SSID is in the format SmartWheelchair-X with X
denoting the unique identifier of the wheelchair. The default
password for the wheelchair is smart123. Upon connecting
to the network and returning to the application, the user can
now press the button to connect to their powered wheelchair
and will be presented with the options seen in figure 11 upon
successful connection.

3) Connection Status Indicator: The Connection Status
Indicator is shown at the top of the screen, showing green
when connected, and red when disconnected. If the connection
is interrupted, the user can press the green Connect button that
appears at the bottom of the screen to restart the connection
process.

4) Enabling & Disabling Features: After connecting, the
status of each feature of the wheelchair will be displayed as
well as the phone number that is configured to receive alerts
in case of an accident or emergency. Enabling and disabling
features works identically as it does on the wheelchairs
touchscreen control panel. Each of the icons is labeled with
the feature it controls and is also labeled as Enabled or
Disabled. Pressing any one of the buttons will immediately
update the wheelchair and play an audio message after the
configuration is applied. The icon will also be updated in the
mobile application to reflect the change.

5) Updating Emergency Phone Number: Below the Con-
nection Status Indicator is the Emergency Phone Number
Entry field. Tapping in this field allows the application user to
change the configured phone number and this setting is sent
to the wheelchair when the green check button is pressed.
Similarly to the enabling and disabling of features, an audio
message plays on the wheelchair when the configuration is
successfully applied.

6) Locating the Wheelchair:
7) Disconnect from the Wheelchair Network: If you are

still connected to the powered wheelchair, the message shown
in figure 12 will appear, notifying you to disconnect from
the wheelchair. Upon disconnecting from the wheelchair, the
internet connection is restored to the phone and the application
will query the last reported location of the wheelchair. This
step is mandatory to track the wheelchair.



14

Fig. 11. Screens shown when configuring the wheelchair

Fig. 12. Screens shown when locating the wheelchair

8) Locate the Wheelchair: Upon disconnecting from the
wheelchair, the application will immediately begin querying
the last reported location of the wheelchair, notifying you
when the location is updated and displaying the gps dot
as shown in figure 12. To center in on the location of the
wheelchair, you must press the Locate button at the bottom of
the map. This zooms in the current view on the last reported
location of the wheelchair.

D. Troubleshooting

1) I Cannot Locate the Wheelchair: If you cannot locate
the powered wheelchair from the mobile application, try the
following:

1) Disconnect from the Powered Wheelchair Network
2) Reboot the Powered Wheelchair
3) Ensure the GPS Tracking Feature is On
4) Wait 2 Minutes for GPS Signal Lock
5) Relaunch Mobile Application

2) The Location is Not Updating:



15

1) Ensure the GPS Module is Connected via USB
2) Ensure the Wheelchair Battery is Not Below 10%
3) Ensure the GPS Tracking Feature is On
4) Motor Controller
The goal of our team was to implement our features and

their control in a way that is easy to use. The configured
features simply work without the user having to think about
them when turning the wheelchair on or off. The large toggle
buttons and audio queues make it easy for all populations to
understand the controls. The rich graphics make our product
seamlessly fit in to the modern smartphone applications that
the general population is accustomed to. In the next section,
we will cover the hardware that makes all of this possible.

APPENDIX B
HARDWARE

See figure 13 for the system wiring diagram. This diagram
illustrates the proper connections made in accordance to the
way the software is designed as well as well as how the devices
should interact with each other.

APPENDIX C
SOFTWARE

With the complexity of software, we give you a high level
understanding of how the devices are communicating with
each other and what the data being sent is used for as well as
what the data is. An illustration of this can be found in figure
14.

The pseudocode can be found in figures 15 to through 59.

APPENDIX D
MECHANICAL

All mechanical drawings can be found in figures 60 to 65.
The boxes were 3-d printed where necessary, therefore these
are the sketches.

APPENDIX E
VENDOR CONTACTS

N/A

APPENDIX F
RESUMES

See end of document for resumes.



16

2
0
1
8
/0

4
/2

4

D
A

T
E

R
E
V 0
1

D
R

A
W

N

N
. 
A

Z
IZ

S
IT

U
A

TI
O

N
A

LL
Y
 A

W
A

R
E 

W
H

E
EL

C
H

A
IR

 W
IR

IN
G

 D
IA

G
R
A

M

T
IT

L
E

D
A

T
E

D
E
SC

R
IP

T
IO

N
R
E
V

2
0
1
8
/0

4
/2

4
In

it
ia

l 
R
e
le

a
se

0
1

R
as

pb
er

ry
 P

i 3
 M

o
d

el
 B

Ki
ne

ct
 M

od
el

 1
41

4

U
SB

1
2

V
in

U
LT

RA
SO

N
IC

S 
X6

5
V

in
TR

IG
G

N
D

B
N

O
 0

5
5

3
V

in
SD

A
SC

L
G

N
D

PO
W

ER
 W

H
E

EL
CH

A
IR

LE
FT

 M
O

TO
R

 1
2V

R
IG

H
T

 M
O

T
O

R
 1

2
V

B
A

TT
ER

Y1
 1

2V
B

A
TT

ER
Y2

 1
2V

 

-+

-+

-+

-+

U
SB

1
U

SB
2

V
in

1
2

V
 t

o
 5

V
 U

SB
 

A
d

ap
te

r

12
V

in

5
V

 U
SB

2
5

V
 U

SB
1

A
R

D
U

IN
O

 M
EG

A
 2

56
0

3
2

3
3

3
0

3
1

2
8

2
9

2
6

2
7

2
4

2
5

2
2

2
3

3
4

V
in

G
N

D
G

N
D

5
V

A
0

A
1

SD
A

SC
L

G
N

D

SA
BE

R
TO

O
TH

0
V

5
V

S1

M
1

A
M

1
B

B
+

B
-

M
2

A
M

2
B

O
PE

N

CL
OS

ED
1

2
3

4
5

6

SW
IT

C
H

 O
N

12
V

O
FF

-

+

TX
0

E
C

H
O

U
C

TR
O

N
IC

S 
3

.5
" 

H
D

M
I T

FT
 L

C
D

 T
o

uc
h 

D
is

pl
ay

G
N

D
  S

CL
K 

 M
IS

O
  M

O
SI

N
C 

   
 T

CS
   

 IR
Q

   
  G

N
D

25 26
19 20

N
C 

N
C

5
V

 5
V

3 4
1 2

G
N

D
  S

CL
K 

 M
IS

O
  M

O
SI

N
C 

   
 T

CS
   

 IR
Q

   
  G

N
D

25 26
19 20

N
C 

N
C

5
V

 5
V

3 4
1 2

3
.7

V
 

12
00

m
A

h

G
SM

 Q
ua

d
-B

an
d 

A
n

te
nn

a 
3

dB
i

Pa
ss

iv
e 

G
PS

 
A

n
te

nn
a

FO
N

A
 8

08

3
.7

V
in

U
SB

 m
ic

ro
 

Ty
p

e 
A

G
P

S
G

S
M

P
S1

3
V

R
ST

G
N

D
G

P
IO

1
8

G
P

IO
1

5
G

P
IO

1
4

SD
A

SC
L

H
D

M
I

H
D

M
I

Fig. 13. System Wiring Diagram



17



18

2
0
1
8
/0

4
/1

3

D
A

T
E

R
E
V 0
2

D
R

A
W

N

N
. 
A

Z
IZ

SI
TU

A
TI

O
N

A
LL

Y
 A

W
A

RE
 W

H
EE

LC
H

A
IR

 
D

A
TA

 F
LO

W
 D

IA
G

R
A

M

T
IT

L
E

D
A

T
E

D
E
SC

R
IP

T
IO

N
R
E
V

2
0
1
7
/1

1
/1

8
In

it
ia

l 
R
e
le

a
se

0
1

A
R

D
U

IN
O

C
O

LL
IS

IO
N

 D
E

T
E

C
T

IS
O

N
 

SE
N

SO
R

R
as

p
be

rr
y 

P
i 3

 M
o

d
el

 B

ST
EP

 D
ET

EC
TI

O
N

 
SE

N
SO

R
 X

2

JA
ZZ

Y 
14

20

EV
EN

T 
N

O
TI

FI
CA

TI
O

N
 

SE
N

SO
R

C
O

LL
IS

IO
N

 D
A

TA

ST
EP

 D
A

TA

M
O

TO
R

 D
A

T
A

EV
EN

T
 D

A
TA

TI
LT

 D
ET

EC
TI

O
N

 
SE

N
SO

R

TI
LT

 D
A

TA

2
0
1
8
/0

4
/1

3
N

e
w

 S
e
tu

p
 +

 G
U

I
0
2

St
e

p,
 S

p
ee

d
, B

at
te

ry

B
A

TT
E

RY

M
O

TO
R 

C
O

N
TR

O
LL

ER

SP
E

ED

M
O

TO
R

 D
A

T
A

G
U

I

C
ol

lis
io

n
, S

te
p,

 T
ilt

, 
Sp

ee
d

, B
at

te
ry

C
ol

lis
io

n
, S

te
p,

 T
ilt

, 
Ev

en
t 

N
ot

if
ic

at
io

n

C
ol

lis
io

n

Fig. 14. System Software Diagram



19

#!/usr/bin/env/python
# -*- coding: utf-8-*-

import freenect
import cv2
import numpy as np
import smbus2 as smbus
import subprocess
from threading import Thread
from collections import deque
from time import sleep, gmtime, strftime

# Arduino Connection
bus = smbus.SMBus(1)
address = 0x04

# Used for storing the Kinect filepath
camerapath = ''
motorpath = ''
audiopath = ''

def send_depth(depth):
    for i in depth:
        bus.write_byte(address, i)
    return -1

# Calls lsusb to get the filepath for usb_reset(), output is:
# # Bus 001 Device 014: ID 045e:02ae Microsoft Corp. Xbox NUI Camera
# The devfs path to these devices is:
# # /dev/bus/usb/<busnum>/<devnum>
# So for the above device, it would be:
# # /dev/bus/usb/001/014

def get_kinect():
    proc = subprocess.Popen(['lsusb'], stdout=subprocess.PIPE)
    out = proc.communicate()[0]
    lines = out.split('\n')
    for line in lines:
        if 'Xbox NUI Camera' in line:
            parts = line.split()
            bus = parts[1]
            dev = parts[3][:3]
            global camerapath
            camerapath = '/dev/bus/usb/%s/%s' % (bus, dev)
        if 'Xbox NUI Motor' in line:
            parts = line.split()
            bus = parts[1]
            dev = parts[3][:3]
            global motorpath
            motorpath = '/dev/bus/usb/%s/%s' % (bus, dev)
        if 'Xbox NUI Audio' in line:
            parts = line.split()
            bus = parts[1]
            dev = parts[3][:3]
            global audiopath
            audiopath = '/dev/bus/usb/%s/%s' % (bus, dev)

# https://gist.github.com/x2q/5124616
# Calls ./usbreset on camerapath, motorpath, and audiopath
def usb_reset():
    get_kinect()
    global camerapath

Fig. 15. Pseudocode For Collision Detection Page 1



20

    global motorpath
    global audiopath

    process1 = subprocess.Popen(
        ['./usbreset', camerapath], stdout=subprocess.PIPE)
    stdout1 = process1.communicate()
    process2 = subprocess.Popen(
        ['./usbreset', motorpath], stdout=subprocess.PIPE)
    stdout2 = process2.communicate()
    process3 = subprocess.Popen(
        ['./usbreset', audiopath], stdout=subprocess.PIPE)
    stdout3 = process3.communicate()

    print camerapath
    print motorpath
    print audiopath
    print stdout1
    print stdout2
    print stdout3
    sleep(3)

def greater_avg(deptharray):
    print(deptharray)
    deptharray_np = np.array(deptharray) 
    deptharray_np = np.average(deptharray_np)    
    return deptharray_np

class KinectDepth(Thread):
    # Prototype the daemon service
    def __init__(self, *largs, **kwargs):
        super(KinectDepth, self).__init__(*largs, **kwargs)
        self.daemon = True
        self.queue = deque()
        self.quit = False
        self.index = 0

    # Our daemon service (Kinect)
    def run(self):
        q = self.queue
        while not self.quit:
            # Open the File To Read if Collision Detection Feature On/Off
            collisionfile = open(
                "/home/pi/Desktop/everyone/vals/collision.txt", "r")
            powerOn = collisionfile.readline(1)
            collisionfile.close()   # Done Reading, close file

            # Grab the depth array from Kinect
            array = freenect.sync_get_depth(
                index=self.index, format=freenect.DEPTH_REGISTERED)
            # If None then either:
            # # 1) Kinect Failed to connect (funny).
            # # 2) Kinect Device has been claimed. (Possibly a hard kill? Ctrl-C)
            if array is None:
                print("Resetting usb, wait two seconds..")
                usb_reset()
                sleep(2)
                continue
            else:
                depthsArr, timestamp = array

                # Define Regions of Interest Out of: 480 x 640
                # roiright = int((np.average(depths[:,:213])/1000) * 36)
                # roimid = int((np.average(depths[:, 213:426])/1000) * 36)

Fig. 16. Pseudocode For Collision Detection Page 2



21

                # roileft = int((np.average(depths[:,426:640])/1000) * 36)
                # depths = [roileft, roimid, roiright]

                # Create a mask with our threshold value
                threshold = 60
                mask = depthsArr > threshold
                
                # Slice the regions into seperate 2d arrays
                roiright = depthsArr[:,:213]<60
                roimid = depthsArr[:,:213:426]<60
                roileft = depthsArr[:,:426:640]<60
                
                # Build a list of indices with the mask and check length 
                objOnRight = 50 if len(roiright[mask]) > 0 else 255
                objInMid = 50 if len(roimid[mask]) > 0 else 255
                objOnLeft = 50 if len(roileft[mask]) > 0 else 255

                depths = [objOnRight, objInMid, objOnLeft]
                # IF ON: Send Depth Data to Motor Controllers
                if powerOn == '1':
                    if objOnRight or objInMid or objOnLeft:
                        collisionafile = open(
                            "/home/pi/Desktop/everyone/vals/collisiona.txt", "w")
                        collisionafile.write("1")
                        collisionafile.close()
                    else:
                        collisionafile = open(
                            "/home/pi/Desktop/everyone/vals/collisiona.txt", "w")
                        collisionafile.write("0")
                        collisionafile.close()
                    send_depth(depths)

                    # Define Current Time
                    currenttime = strftime("%Y-%m-%d %H:%M:%S", gmtime())
                    print "{0}       AT: {1}".format(depths, currenttime)

                # IF OFF: Send Const Data to Motor Controller
                else:
                    print "Feature Off {0}".format(powerOn)
                    # 253 is used and RESERVED when the feature is off.
                    send_depth([253, 253, 253])
                continue
            q.appendleft(array)

    def pop(self):
        return self.dequeue.pop()

if __name__ == "__main__":
    while (1):
        KinectDepth().run()

Fig. 17. Pseudocode For Collision Detection Page 3



22

Untitled
// -------States legend--------
// 'O' -> Operational/Waiting/Halted
// 'S' -> Stop/No Movement
// 'A' -> Acceleration
// 'D' -> Deceleration
// 'F' -> Full Speed Forward
// 'B' -> Full Speed Backward

 #include <Wire.h>
 #include <SabertoothSimplified.h>
 #define SLAVE_ADDRESS 0x04

 SabertoothSimplified ST; // We'll name the Sabertooth object ST.
                         // For how to configure the Sabertooth, see the DIP Switch Wizard 
for
                         //   
http://www.dimensionengineering.com/datasheets/SabertoothDIPWizard/start.htm
                         // Be sure to select Simplified Serial Mode for use with this 
library.
                         // This sample uses a baud rate of 9600.
                         //
                         // Connections to make:
                         //   Arduino TX->1  ->  Sabertooth S1
                         //   Arduino GND    ->  Sabertooth 0V
                         //   Arduino VIN    ->  Sabertooth 5V (OPTIONAL, if you want the 
Sabertooth to power the Arduino)
                         //
                         // If you want to use a pin other than TX->1, see the SoftwareSerial
example.

 int byteArray[] = {254, 254, 254};
 int ndx=0;

 char bluData = 'O';
 char bluState = 'S';
 char toggleBlu = 'O';
 int bluSpeed = 64;
 
 int sendValue;
 int speedLevel = 2;
 int kinThreshold = 60;
 
 int joyPin0 = A0;                 // slider variable connecetd to analog pin 0
 int joyPin1 = A1;                 // slider variable connecetd to analog pin 1
 int valX = 0;                  // variable to read the value from the analog pin 0
 int valY = 0;                  // variable to read the value from the analog pin 1

 char motorState = 'O';
 int speedFB = 0;

 bool stepAlert = false;
 // defines pins numbers
 const int trigPinFront = 24;
 const int echoPinFront = 25;
 const int trigPinRight = 26;
 const int echoPinRight = 27;
 const int trigPinLeft = 28;
 const int echoPinLeft = 29;

 // defines variables
 long duration;
 int distance;

 void setup() {
  SabertoothTXPinSerial.begin(9600); // This is the baud rate you chose with the DIP 

Page 1

Fig. 18. Pseudocode For Motor Controls Page 1



23

Untitled
switches.            
  //Serial.begin(9600);
  ST.drive(0); // The Sabertooth won't act on mixed mode until
  ST.turn(0);  // it has received power levels for BOTH throttle and turning, since it
               // mixes the two together to get diff-drive power levels for both motors.
               // So, we set both to zero initially.

  Serial1.begin(9600);          

  pinMode(trigPinFront, OUTPUT); // Sets the trigPin as an Output
  pinMode(echoPinFront, INPUT); // Sets the echoPin as an Input
  pinMode(trigPinLeft, OUTPUT); // Sets the trigPin as an Output
  pinMode(echoPinLeft, INPUT); // Sets the echoPin as an Input
  pinMode(trigPinRight, OUTPUT); // Sets the trigPin as an Output
  pinMode(echoPinRight, INPUT); // Sets the echoPin as an Input
  
  // initialize i2c as slave
  Wire.begin(SLAVE_ADDRESS);
  // define callbacks for i2c communication
  Wire.onReceive(receiveData);
  Wire.onRequest(sendData);
 }

int findDistance(int which){
  // Reads the echoPin, returns the sound wave travel time in microseconds
  duration = pulseIn(which, HIGH);

  // Calculating the distance
  return distance = duration*0.034/2;
}

void sendData(){
  if(stepAlert == true){
    stepAlert = false;
    sendValue = 241;
  }
  else{
    sendValue = (speedFB/speedLevel);
    sendValue = abs(sendValue);
  }
  Wire.write(sendValue);
}

// callback for received data
void receiveData(int byteCount) {
  while (Wire.available()) {
    if (ndx==0){
      byteArray[0] = Wire.read();
      ndx=1;
      continue;
    }
    if (ndx==1){
      byteArray[1] = Wire.read();
      ndx=2;
      continue;
    }
    if (ndx==2){
      byteArray[2] = Wire.read();
      ndx=0;
      continue;
    }
  }
}

 int treatValueY(int data) {

Page 2

Fig. 19. Pseudocode For Motor Controls Page 2



24

Untitled
  //map(value, fromLow, fromHigh, toLow, toHigh)
  if (data <= 500)
    return map(data, 0, 500, -127, 0);
  if (data > 500)
    return map(data, 500, 1023, 0, 127);
 }
 int treatValueX(int data) {
  //map(value, fromLow, fromHigh, toLow, toHigh)
  if (data <= 500)
    return map(data, 0, 500, 127, 0);
  if (data > 500)
    return map(data, 500, 1023, 0, -127);
 }

 //------------Region Selector----------------------
 void regionChooser(int speedY, int speedX){
  if ( (speedX < 35) && (speedX > -35)){
    if(byteArray[1] <= kinThreshold){
      motorState = 'O';
    }
    else
      stateChooser(speedY);
  }
  if (speedX < -35){
    if(byteArray[0] <= kinThreshold){
      motorState = 'O';
    }
    else
      stateChooser(speedY);
  }
  if (speedX > 35){
    if(byteArray[2] <= kinThreshold){
      motorState = 'O';
    }
    else
      stateChooser(speedY);
  }
  if(speedY < -7){
    motorState = 'D';
  }
 }
 //-------------------------------------------------
 
 //------------State Choose-------------------------
 void stateChooser(int speedY){
  if(speedY > 7){
    motorState = 'A';
    if(findDistance(echoPinFront) > 50){
      //Serial.print("hi");
      stepAlert = true;
      motorState = 'S';
    }
  }
  if(speedY < -7){
    motorState = 'D';
  }
  if( (speedY <= 7) && (speedY >= -7) ){
    motorState = 'O';
    if(findDistance(echoPinFront) > 50){
      //Serial.print("hi");
      stepAlert = true;
      motorState = 'S';
    }
  }
 }

Page 3

Fig. 20. Pseudocode For Motor Controls Page 3



25

Untitled
//-------------------------------------------------

 //------------State Choose Bluetooth-------------------------
 void stateChooserBlu(){
  if(bluState == 'S'){
    motorState = 'S';
    speedChanger(bluSpeed);
    if(findDistance(echoPinFront) > 50){
      //Serial.print("hiB");
      stepAlert = true;
      motorState = 'S';
    }
  }
  if(bluState == 'F'){
    motorState = 'A';
    speedChanger(bluSpeed);
    if(findDistance(echoPinFront) > 50){
      //Serial.print("hiB");
      stepAlert = true;
      motorState = 'S';
    }
  }
  if(bluState == 'B'){
    motorState = 'D';
    speedChanger(-bluSpeed);
  }
 }
//-------------------------------------------------

//------------Speed Change-------------------------
 void speedChanger(int speedY){
  if (motorState == 'O'){
    if(speedFB > 0){
      speedFB -= 1;
    }
    if(speedFB < 0){
      speedFB += 1;
    }
  }
  if (motorState == 'S'){
    if(speedFB > 0){
      speedFB = 0;
    }
    if(speedFB < 0){
      speedFB = 0;
    }
  }
  if (motorState == 'A'){
    delay(25);
    speedFB += 1;
    if (speedFB >= speedY){
      motorState = 'F';
    }
  }
  if (motorState == 'D'){
    delay(25);
    speedFB -= 1;
    if (speedFB <= speedY){
      motorState = 'B';
    }
  }
  if (motorState == 'F'){
    speedFB = speedY-1;
  }
  if (motorState == 'B'){

Page 4

Fig. 21. Pseudocode For Motor Controls Page 4



26

Untitled
    speedFB = speedY+1;
  }
 }
//------------------------------------------------

 void loop() {
  // Clears the trigPin
  digitalWrite(trigPinFront, LOW);
  delayMicroseconds(2);

  // Sets the trigPin on HIGH state for 10 micro seconds
  digitalWrite(trigPinFront, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPinFront, LOW);
  
  valX = analogRead(joyPin0);   
  valY = analogRead(joyPin1);   

  int speedX = treatValueX(valX);
  int speedY = treatValueY(valY);

  //Serial.println("BeforeBlue");

  if(Serial1.available() > 0){
    bluData = Serial1.read();
    //Serial.println("hiblu");
    if(bluData == 'I'){
      toggleBlu = bluData;
    }
    else if(bluData == 'O'){
      toggleBlu = bluData;
    }
    else{
      bluState = bluData;
    }
  }
  //Serial.println("AfterBLUE");
  //Serial.print("toggleBlu: ");
  //Serial.println(toggleBlu);

  if(toggleBlu == 'I'){
    if(bluState == 'L'){
      speedX = -44;
    }
    else if(bluState == 'R'){
      speedX = 44;
    }
    else{
      speedX = 0;
      stateChooserBlu();
    }

    ST.drive(speedFB);
    //Serial.print("FB: ");
    //Serial.print(speedFB);
    //Serial.println("Bluetooth Mode");
    
    /*if(findDistance(echoPinRight) > 50) ST.turn(-50);
    else if(findDistance(echoPinLeft) > 50) ST.turn(50);
    else ST.turn(speedX);*/
    ST.turn(speedX);
    //Serial.print(" LR: ");
    //Serial.println(speedX);
  }
  else if(toggleBlu == 'O'){

Page 5

Fig. 22. Pseudocode For Motor Controls Page 5



27

Untitled
    regionChooser(speedY, speedX);
    speedChanger(speedY);

    ST.drive(speedFB/speedLevel);  
    //Serial.print("FB: ");
    //Serial.print(speedFB/speedLevel);
    //Serial.println("Joystick Mode");
  
    /*if(findDistance(echoPinRight) > 50) ST.turn(-50);
    else if(findDistance(echoPinLeft) > 50) ST.turn(50);
    else ST.turn(speedX/3);*/
    ST.turn(speedX/3);
    //Serial.print(" LR: ");
    //Serial.println(speedX/3);
  }
 }

Page 6

Fig. 23. Pseudocode For Motor Controls Page 6



28

# Simple Adafruit BNO055 sensor reading example.  Will print the orientation
# and calibration data every second.
#
# Copyright (c) 2015 Adafruit Industries
# Author: Tony DiCola
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

import time
import subprocess

def main():
import logging
import sys
import time

from Adafruit_BNO055 import BNO055

# Create and configure the BNO sensor connection.  Make sure only ONE of the
# below 'bno = ...' lines is uncommented:
# Raspberry Pi configuration with serial UART and RST connected to GPIO 18:

bno = BNO055.BNO055(serial_port='/dev/serial0', rst=18)

# Enable verbose debug logging if -v is passed as a parameter.
if len(sys.argv) == 2 and sys.argv[1].lower() == '-v':

logging.basicConfig(level=logging.DEBUG)

# Initialize the BNO055 and stop if something went wrong.
if not bno.begin():

raise RuntimeError('Failed to initialize BNO055! Is the sensor connected?')

# Print system status and self test result.
status, self_test, error = bno.get_system_status()
print('System status: {0}'.format(status))
print('Self test result (0x0F is normal): 0x{0:02X}'.format(self_test))
# Print out an error if system status is in error mode.
if status == 0x01:

print('System error: {0}'.format(error))
print('See datasheet section 4.3.59 for the meaning.')

# Print BNO055 software revision and other diagnostic data.
sw, bl, accel, mag, gyro = bno.get_revision()
print('Software version:   {0}'.format(sw))
print('Bootloader version: {0}'.format(bl))
print('Accelerometer ID:   0x{0:02X}'.format(accel))

Fig. 24. Pseudocode For Tilt Page 1



29

print('Magnetometer ID:    0x{0:02X}'.format(mag))
print('Gyroscope ID:       0x{0:02X}\n'.format(gyro))

print('Reading BNO055 data, press Ctrl-C to quit...')

sent = False
while True:

# Read the Euler angles for heading, roll, pitch (all in degrees).
heading, roll, pitch = bno.read_euler()
# Read the calibration status, 0=uncalibrated and 3=fully calibrated.
sys, gyro, accel, mag = bno.get_calibration_status()
# Print everything out.
print('Heading={0:0.2F} Roll={1:0.2F} Pitch={2:0.2F}\tSys_cal={3} Gyro_cal={4}

Accel_cal={5} Mag_cal={6}'.format(
  heading, roll, pitch, sys, gyro, accel, mag))

if roll > 50 or roll < -50 or pitch > 50 or pitch < -50:
if(not sent):
    print('Sending SMS to FONA')
    crashfile = open("/home/pi/Desktop/everyone/vals/crash.txt", "w")
    crashfile.write("1")
    crashfile.close()

            sent = True
elif roll > 5: # or roll < -25:

tiltfile = open("/home/pi/Desktop/everyone/vals/tiltR.txt", "w")
tiltfile.write("2")
tiltfile.close()
print('is sending right tilt alert to GUI')

                elif roll < -5:
tiltfile = open("/home/pi/Desktop/everyone/vals/tiltR.txt", "w")
tiltfile.write("1")
tiltfile.close()
print('is sending left tilt alert to GUI')

else:
print("here")

                        tiltfile = open("/home/pi/Desktop/everyone/vals/tiltR.txt", "w")
tiltfile.write("0")
tiltfile.close()
sent = False # Reset the sent variable after wheelchair is upright
print('you good')

###########################################################################
##SMS FONA###
##########################################################################

#x,y,z = bno.read_linear_acceleration()

# Sleep for a second until the next reading.
time.sleep(.5)

def start():
    while(True):
        main()
start()
 
def getVals():
    tiltState = open("/home/pi/Desktop/everyone/vals.tilt.txt", "r")
    tiltVal = tiltState.readLine(1)
    tiltState.close()
        
# def tiltAlertFunc():
# global tiltState
# global tiltAlert
#

Fig. 25. Pseudocode For Tilt Page 2



30

#       if tiltState == 0:
#    tiltAlert = True
#    print("tiltState 0")
# if ((tiltState == 1) & (tiltAlert == True)):

#if __name__ == "__main__":
#    start()

Fig. 26. Pseudocode For Tilt Page 3



31

=============================================================================== 
 MOBILE APPLICATION CODE (ANDROID) 
=============================================================================== 
 
 
================================================ 
================================================ 
===========      SPLASHSCREEN      ============= 
================================================ 
================================================ 
================================================ 
 
 
package khalil.smartwheelchair; 
 
import android.app.Activity; 
import android.content.Intent; 
import android.graphics.PixelFormat; 
import android.media.Image; 
import android.os.Bundle; 
import android.view.MotionEvent; 
import android.view.View; 
import android.view.Window; 
import android.view.animation.Animation; 
import android.view.animation.AnimationUtils; 
import android.widget.Button; 
import android.widget.ImageView; 
import android.widget.LinearLayout; 
import android.widget.TextView; 
 
public class Splashscreen extends Activity { 
    public Button splash_button; 
 
    public void onAttachedToWindow() { 
        super.onAttachedToWindow(); 
        Window window = getWindow(); 
        window.setFormat(PixelFormat.RGBA_8888); 
    } 
    /** Called when the activity is first created. */ 
 
    @Override 
    public void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_splashscreen); 
        StartAnimations(); 
        splash_button = (Button) findViewById(R.id.splash_button); 
        splash_button.setBackgroundResource(R.drawable.selector); 
        splash_button.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View v) { 
                final Intent intent = new Intent(Splashscreen.this, MainActivity.class); 
                startActivity(intent); 
            } 
        }); 
    } 
 
    private void StartAnimations() { 
        Animation fade_in = AnimationUtils.loadAnimation(this, R.anim.alpha); 
 
        ImageView iv = (ImageView) findViewById(R.id.splash_text); 
        iv.startAnimation(fade_in); 
    } 
} 
 
 
 
 
 
 

Fig. 27. Pseudocode For Mobile App & Event Notification Page 1



32

================================================ 
================================================ 
=======   CUSTOM PAGER FOR FRAGMENTS   ========= 
================================================ 
================================================ 
================================================ 
 
 
package khalil.smartwheelchair; 
 
import android.content.Context; 
import android.support.v4.view.ViewPager; 
import android.util.AttributeSet; 
import android.view.MotionEvent; 
 
 
public class CustomViewPager extends ViewPager { 
        public CustomViewPager(Context context, AttributeSet attrs) { 
            super(context, attrs); 
        } 
 
        @Override 
        public boolean onTouchEvent(MotionEvent event) { 
            return false; 
        } 
 
        @Override 
        public boolean onInterceptTouchEvent(MotionEvent event) { 
            return false; 
        } 
} 
 
================================================ 
================================================ 
======     PAGER ADAPTER FOR FRAGMENTS     ===== 
================================================ 
================================================ 
================================================ 
 
package khalil.smartwheelchair; 
 
import android.support.v4.app.Fragment; 
import android.support.v4.app.FragmentManager; 
import android.support.v4.app.FragmentStatePagerAdapter; 
 
import java.util.ArrayList; 
import java.util.List; 
 
/** 
 * Created by khalil on 12/22/17. 
 */ 
 
public class SectionsStatePagerAdapter extends FragmentStatePagerAdapter { 
 
 
    private final List<Fragment> mFragmentList = new ArrayList<>(); 
    private final List<String> mFragmentTitleList = new ArrayList<>(); 
 
    public SectionsStatePagerAdapter(FragmentManager fm) { 
        super(fm); 
    } 
 
    public void addFragment(Fragment fragment, String title){ 
        mFragmentList.add(fragment); 
        mFragmentTitleList.add(title); 
    } 
 
    @Override 

Fig. 28. Pseudocode For Mobile App & Event Notification Page 2



33

    public Fragment getItem(int position) { 
        return mFragmentList.get(position); 
    } 
 
    @Override 
    public int getCount() { 
        return mFragmentList.size(); 
    } 
} 
 
 
================================================ 
================================================ 
===  MAIN ACTIVITY TO HOUSE ALL FRAGMENTS   ==== 
================================================ 
================================================ 
================================================ 
 
package khalil.smartwheelchair; 
 
import android.content.DialogInterface; 
import android.content.pm.PackageManager; 
import android.os.Build; 
import android.os.Bundle; 
import android.support.annotation.NonNull; 
import android.support.design.widget.BottomNavigationView; 
import android.support.v4.app.Fragment; 
import android.support.v4.view.ViewPager; 
import android.support.v7.app.AppCompatActivity; 
import android.view.MenuItem; 
 
public class MainActivity extends AppCompatActivity { 
 
    private SectionsStatePagerAdapter mSectionsStatePagerAdapter; 
    private CustomViewPager mViewPager; 
    private static final int REQUEST_SMS = 0; 
 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
 
        mSectionsStatePagerAdapter = new SectionsStatePagerAdapter(getSupportFragmentManager()); 
        mViewPager = (CustomViewPager) findViewById(R.id.container); 
        setupViewPager(mViewPager); 
 
        BottomNavigationView bottomNavigationView = (BottomNavigationView) 
                findViewById(R.id.navigation); 
 
        bottomNavigationView.setOnNavigationItemSelectedListener 
                (new BottomNavigationView.OnNavigationItemSelectedListener() { 
                    @Override 
                    public boolean onNavigationItemSelected(@NonNull MenuItem item) { 
                        Fragment selectedFragment = null; 
                        switch (item.getItemId()) { 
                            case R.id.navigation_home: 
                                setViewPager(0); 
                                break; 
                            case R.id.navigation_dashboard: 
                                setViewPager(1); 
                                break; 
                            case R.id.navigation_notifications: 
                                setViewPager(2); 
                                break; 
                        } 
                        return true; 
                    } 
                }); 

Fig. 29. Pseudocode For Mobile App & Event Notification Page 3



34

 
        requestSMSPermission(); 
 
    } 
 
    private void setupViewPager(ViewPager viewPager){ 
        SectionsStatePagerAdapter sectionsStatePagerAdapter = new 
SectionsStatePagerAdapter(getSupportFragmentManager()); 
        sectionsStatePagerAdapter.addFragment(new Fragment2(), "Order History"); 
        sectionsStatePagerAdapter.addFragment(new Fragment1(), "Market Overview"); 
        sectionsStatePagerAdapter.addFragment(new Fragment3(), "Order History"); 
 
        viewPager.setAdapter(sectionsStatePagerAdapter); 
    } 
 
    public void setViewPager(int fragmentNum){ 
        mViewPager.setCurrentItem(fragmentNum); 
    } 
 
    public void requestSMSPermission() { 
        int hasSMSPermission = checkSelfPermission(android.Manifest.permission.SEND_SMS); 
        if (hasSMSPermission != PackageManager.PERMISSION_GRANTED) { 
            if (!shouldShowRequestPermissionRationale(android.Manifest.permission.SEND_SMS)) { 
                showMessageOKCancel("This application requires some permissions to operate properly.", 
                        new DialogInterface.OnClickListener() { 
                            @Override 
                            public void onClick(DialogInterface dialog, int which) { 
                                if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) { 
                                    requestPermissions(new String[]{android.Manifest.permission.SEND_SMS, 
                                                    android.Manifest.permission.READ_PHONE_STATE, 
                                                    android.Manifest.permission.INTERNET}, 
                                            REQUEST_SMS); 
                                } 
                            } 
                        }); 
                return; 
            } 
            requestPermissions(new String[]{android.Manifest.permission.SEND_SMS, 
                            android.Manifest.permission.READ_PHONE_STATE, 
                            android.Manifest.permission.INTERNET}, 
                    REQUEST_SMS); 
        } 
 
    } 
 
    private void showMessageOKCancel(String message, DialogInterface.OnClickListener okListener) { 
        new android.support.v7.app.AlertDialog.Builder(MainActivity.this) 
                .setMessage(message) 
                .setPositiveButton("OK", okListener) 
                .setNegativeButton("Cancel", null) 
                .create() 
                .show(); 
    } 
} 
 
 
================================================ 
================================================ 
=======   FRAGMENT 1: LOCATE WHEELCHAIR  ======= 
================================================ 
================================================ 
================================================ 
 
 
package khalil.smartwheelchair; 
 
 
import android.*; 

Fig. 30. Pseudocode For Mobile App & Event Notification Page 4



35

import android.app.AlertDialog; 
import android.app.DownloadManager; 
import android.app.ProgressDialog; 
import android.content.BroadcastReceiver; 
import android.content.Context; 
import android.content.DialogInterface; 
import android.content.Intent; 
import android.content.IntentFilter; 
import android.content.SharedPreferences; 
import android.content.pm.PackageManager; 
import android.location.Address; 
import android.location.Geocoder; 
import android.net.wifi.SupplicantState; 
import android.net.wifi.WifiInfo; 
import android.net.wifi.WifiManager; 
import android.os.AsyncTask; 
import android.os.Build; 
import android.os.Bundle; 
import android.provider.Settings; 
import android.support.design.widget.Snackbar; 
import android.support.v4.app.Fragment; 
import android.util.Log; 
import android.view.Gravity; 
import android.view.LayoutInflater; 
import android.view.View; 
import android.view.ViewGroup; 
import android.widget.AdapterView; 
import android.widget.BaseAdapter; 
import android.widget.Button; 
import android.widget.ImageView; 
import android.widget.ListView; 
import android.widget.ProgressBar; 
import android.widget.TextView; 
import android.widget.Toast; 
 
import com.android.volley.Request; 
import com.android.volley.RequestQueue; 
import com.android.volley.Response; 
import com.android.volley.VolleyError; 
import com.android.volley.toolbox.JsonObjectRequest; 
import com.android.volley.toolbox.Volley; 
import com.google.android.gms.maps.OnMapReadyCallback; 
import com.ubidots.ApiClient; 
import com.ubidots.Value; 
import com.ubidots.Variable; 
 
import com.google.android.gms.maps.CameraUpdate; 
import com.google.android.gms.maps.CameraUpdateFactory; 
import com.google.android.gms.maps.GoogleMap; 
import com.google.android.gms.maps.SupportMapFragment; 
import com.google.android.gms.maps.model.BitmapDescriptorFactory; 
import com.google.android.gms.maps.model.LatLng; 
import com.google.android.gms.maps.model.MarkerOptions; 
import com.ubidots.ApiClient; 
import com.ubidots.Variable; 
 
import org.json.JSONObject; 
 
import java.io.IOException; 
import java.text.DateFormat; 
import java.util.Calendar; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Locale; 
import java.util.Timer; 
import java.util.TimerTask; 
 
/** 

Fig. 31. Pseudocode For Mobile App & Event Notification Page 5



36

 * Created by khalil on 12/22/17. 
 */ 
 
public class Fragment1 extends Fragment implements OnMapReadyCallback{ 
    private GoogleMap mMap; 
    private Button mLocateBtn; 
    private TextView mAddress; 
    private TextView mStatus; 
    private ImageView mStatusCircle; 
    private Toast mToast; 
    private ImageView mGPSPin; 
    private RequestQueue mRequestQueue; 
    public JsonObjectRequest stringRequest; 
    private static final String TAG = MainActivity.class.getName(); 
    private static final String REQUESTTAG = "Price Request"; 
    Double longitude = 0d; 
    Double latitude = 0d; 
    String address; 
    Timer timer; 
    LatLng location; 
    Boolean pause; 
    Boolean locationUpdated = true; 
    Boolean isInitialized = false; 
    double[] latlng = {0d,0d}; 
 
 
    @Override 
    public void setUserVisibleHint(boolean isVisibleToUser) { 
        super.setUserVisibleHint(isVisibleToUser); 
        if (!isVisibleToUser) { 
            if (timer != null) { 
                System.out.println("STOPPING FRAGMENT 1 TIMER"); 
                timer.purge(); 
                timer.cancel(); 
                timer = null; 
            } 
        } else { 
            if(isConnected()){ 
                displayDialog(); 
            } 
            if (timer == null && isInitialized) { 
                System.out.println("STARTING FRAGMENT 1 TIMER"); 
                startTimer(); 
            } 
        } 
    } 
 
    @Override 
    public void onViewCreated(View view, Bundle savedInstanceState){ 
        SupportMapFragment mapFragment = (SupportMapFragment) 
getChildFragmentManager().findFragmentById(R.id.map); 
        mLocateBtn = getActivity().findViewById(R.id.locatebutton); 
        mAddress = getActivity().findViewById(R.id.address); 
        mStatus = getActivity().findViewById(R.id.status_text); 
        mStatusCircle = getActivity().findViewById(R.id.status_circle); 
        mapFragment.getMapAsync(this); 
        mLocateBtn.setBackgroundResource(R.drawable.selector_locate); 
        mGPSPin = getActivity().findViewById(R.id.gps_pin); 
        mGPSPin.setImageResource(R.drawable.gps_pin_disabled); 
        mLocateBtn.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View view) { 
                geoLocate(getActivity().findViewById(R.id.map)); 
            } 
        }); 
    } 
 
    public boolean isConnected(){ 

Fig. 32. Pseudocode For Mobile App & Event Notification Page 6



37

        String ssid; 
 
        WifiManager wifiManager = (WifiManager) 
getActivity().getApplicationContext().getSystemService(Context.WIFI_SERVICE); 
        WifiInfo wifiInfo = wifiManager.getConnectionInfo(); 
 
        if (wifiInfo.getSupplicantState() == SupplicantState.COMPLETED) { 
            ssid = wifiInfo.getSSID(); 
            System.out.println("SSID " + ssid); 
            if(ssid.toLowerCase().contains("smartwheelchair")) { 
                    return true; 
            } else { 
                return false; 
            } 
        } 
        return false; 
    } 
 
    @Override 
    public View onCreateView(LayoutInflater inflater, ViewGroup container, 
                             Bundle savedInstanceState){ 
        View v = inflater.inflate(R.layout.fragment1_layout, container, false); 
        return v; 
    } 
 
    @Override 
    public void onMapReady(GoogleMap googleMap) { 
        mMap = googleMap; 
        String str = "38.5816,-121.4944"; 
        String[] coordinates = str.split(","); 
 
        goToLocation(Double.parseDouble(coordinates[0]), Double.parseDouble(coordinates[1])); 
        geoLocate(getActivity().findViewById(R.id.map)); 
        isInitialized = true; 
    } 
 
    public void goToLocation(double lat, double lng) { 
        LatLng ll = new LatLng(lat, lng); 
        CameraUpdate update = CameraUpdateFactory.newLatLng(ll); 
        mMap.moveCamera(update); 
    } 
 
    public void goToLocationZoom(double lat, double lng, float zoom) { 
        LatLng ll = new LatLng(lat, lng); 
        CameraUpdate update = CameraUpdateFactory.newLatLngZoom(ll, zoom); 
        mMap.moveCamera(update); 
    } 
 
    public void geoLocate(final View view) { 
        Button button = (Button) getActivity().findViewById(R.id.locatebutton); 
        button.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View v) { 
                if(!isConnected() && !latitude.equals(0d) && !longitude.equals(0d)) { 
                    moveCameratoLocation(); 
                } 
            } 
        }); 
    } 
 
    private void startTimer() { 
        timer = new Timer(); 
        timer.scheduleAtFixedRate(new TimerTask() { 
            public void run() { 
                        if(!isConnected()) { 
                            getActivity().runOnUiThread(new Runnable() { 
                                @Override 
                                public void run() { 
                                    new ApiUbidots().execute(); 

Fig. 33. Pseudocode For Mobile App & Event Notification Page 7



38

                                } 
                            }); 
                        } else { 
                            getActivity().runOnUiThread(new Runnable() { 
                                @Override 
                                public void run() { 
                                    mAddress.setText("N/A\nN/A"); 
                                    mStatus.setText("Status: No Location\nUpdated: N/A"); 
                                    mGPSPin.setImageResource(R.drawable.gps_pin_disabled); 
                                    mStatusCircle.setImageResource(R.drawable.status_red); 
                                } 
                            }); 
                        } 
            } 
        }, 1000, 3000); //Length of how often to update location 
    } 
 
    public void displayDialog(){ 
        getActivity().runOnUiThread(new Runnable() { 
            @Override 
            public void run() { 
                AlertDialog.Builder builder; 
                if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) { 
                    builder = new AlertDialog.Builder(getContext(), 
android.R.style.Theme_Material_Dialog_Alert); 
                } else { 
                    builder = new AlertDialog.Builder(getContext()); 
                } 
                builder.setTitle("Connect to the Internet") 
                        .setMessage("In order to locate the powered wheelchair, you must disconnect from its 
wireless connection. Press 'OK' to disconnect from the powered wheelchair.") 
                        .setPositiveButton("Ok", new DialogInterface.OnClickListener() { 
                            public void onClick(DialogInterface dialog, int which) { 
 
                                startActivityForResult(new Intent(Settings.ACTION_WIFI_SETTINGS),0); 
                                //moveCameratoLocation(); 
                            } 
                        }) 
                        .setNegativeButton("Cancel", new DialogInterface.OnClickListener() { 
                            public void onClick(DialogInterface dialog, int which) { 
                                toastMessage("Cancelling Wheelchair Locate"); 
                            } 
                        }) 
                        .setIcon(android.R.drawable.ic_dialog_alert) 
                        .setCancelable(false) 
                        .show(); 
            } 
        }); 
    } 
 
    private void toastMessage(final String message){ 
        getActivity().runOnUiThread(new Runnable() { 
            @Override 
            public void run() { 
                if(mToast!=null) 
                    mToast.cancel(); 
                mToast = Toast.makeText(getActivity(), message, Toast.LENGTH_SHORT); 
                mToast.setGravity(Gravity.CENTER_HORIZONTAL,0,700); 
                mToast.show(); 
            } 
        }); 
    } 
 
    public void getLocation(Long timestamp) { 
        View view = getActivity().findViewById(R.id.map); 
 
        latlng[0] = longitude; 
        latlng[1] = latitude; 

Fig. 34. Pseudocode For Mobile App & Event Notification Page 8



39

 
        Geocoder geocoder; 
        List<Address> addresses = null; 
 
        geocoder = new Geocoder(view.getContext(), Locale.getDefault()); 
 
        try { 
            addresses = geocoder.getFromLocation(latlng[0], latlng[1], 1); // Here 1 represent max location 
result to returned, by documents it recommended 1 to 5 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 
        try { 
            address = addresses.get(0).getAddressLine(0); // If any additional address line present than 
only, check with max available address lines by getMaxAddressLineIndex() 
            String city = addresses.get(0).getLocality(); 
            String state = addresses.get(0).getAdminArea(); 
            String country = addresses.get(0).getCountryName(); 
            String postalCode = addresses.get(0).getPostalCode(); 
            String knownName = addresses.get(0).getFeatureName(); // Only if available else return NULL 
            mAddress.setText(address.split(",")[0] + "\n" + 
                    address.split(",")[1].trim() + ", " + 
                    address.split(",")[2].trim()); 
            getDate(timestamp); 
            mGPSPin.setImageResource(R.drawable.gps_pin); 
        } catch (Exception e) { 
            address = "Unknown Location"; 
        } 
 
        location = new LatLng(latlng[0], latlng[1]); 
        if(locationUpdated) { 
            mMap.clear(); 
            mMap.addMarker(new MarkerOptions() 
                    .position(location) 
                    .title(address) 
                    .icon(BitmapDescriptorFactory.fromResource(R.drawable.gps_dot)) 
                    .anchor(0.5f, 0.5f)); 
        } 
    } 
 
    public void moveCameratoLocation(){ 
        mMap.moveCamera(CameraUpdateFactory.newLatLng(location)); 
        goToLocationZoom(latlng[0], latlng[1], 16); 
    } 
 
    public void sendMySMS() { 
 
        String phone = "9165739798"; 
        String message = "LOCATE"; 
 
    } 
 
    @Override 
    public void onDestroy(){ 
        super.onDestroy(); 
        pause = true; 
    } 
 
    @Override 
    public void onPause(){ 
        super.onPause(); 
        pause = true; 
    } 
 
    @Override 
    public void onStop(){ 
        super.onStop(); 
    } 

Fig. 35. Pseudocode For Mobile App & Event Notification Page 9



40

 
    @Override 
    public void onResume(){ 
        super.onResume(); 
    } 
 
    public class ApiUbidots extends AsyncTask<Integer, Void, com.ubidots.Value[]> { 
        private final String API_KEY = "A1E-84aa9fd314060bd8013989f6dbd8176b6f4e"; 
        private final String Lat_ID = "59e1c8e6c03f977288035309"; 
        private final String Long_ID = "59e1c4b4c03f976d8614041e"; 
 
        @Override 
        protected com.ubidots.Value[] doInBackground(Integer... params) { 
            try { 
                ApiClient apiClient = new ApiClient(API_KEY); 
                Variable longitude = apiClient.getVariable(Long_ID); 
                com.ubidots.Value[] lon = longitude.getValues(); 
                return (lon); 
            } catch (Exception e) { 
                System.out.println("ERRORORORORORO"); 
                e.printStackTrace(); 
            } 
            return null; 
        } 
 
        @Override 
        protected void onPostExecute(com.ubidots.Value[] lon){ 
            if(lon != null) { 
                String latlng_string = String.format("%.0f", lon[0].getValue()); 
                Double lng = Double.parseDouble(latlng_string.substring(2, 9).replaceFirst("^0+(?!$)", "")) / 
10000; 
                Double lat = Double.parseDouble(latlng_string.substring(10, 17).replaceFirst("^0+(?!$)", "")) 
/ -10000; 
                //Toast.makeText(getContext(), Double.toString(lng) + ", " + 
Double.toString(lat),Toast.LENGTH_SHORT).show(); 
                if (!longitude.equals(lng) && !latitude.equals(lat)) { 
                    longitude = lng; 
                    latitude = lat; 
                    locationUpdated = true; 
                } else 
                    locationUpdated = false; 
                getLocation(lon[0].getTimestamp()); 
            } 
        } 
    } 
 
    private String getDate(final long time) { 
        Calendar cal = Calendar.getInstance(Locale.ENGLISH); 
        cal.setTimeInMillis(time); 
        final String date = android.text.format.DateFormat.format("MM/dd HH:mm a", cal).toString(); 
        getActivity().runOnUiThread(new Runnable() { 
            @Override 
            public void run() { 
                String status_line; 
                long tenAgo = System.currentTimeMillis() - 10 * 60 * 1000; 
                if(time < tenAgo){ 
                    status_line = "Status: Not Live Data\n"; 
                    mStatusCircle.setImageResource(R.drawable.status_yellow); 
                } else { 
                    status_line = "Status: Live Data\n"; 
                    mStatusCircle.setImageResource(R.drawable.status_green); 
                } 
                mStatus.setText(status_line + "Updated: " + date); 
            } 
        }); 
        return date; 
    } 
} 

Fig. 36. Pseudocode For Mobile App & Event Notification Page 10



41

 
================================================ 
================================================ 
====  FRAGMENT 2: CONFIGURE WHEELCHAIR  ======== 
================================================ 
================================================ 
================================================ 
 
package khalil.smartwheelchair; 
 
 
import android.app.AlertDialog; 
import android.app.ProgressDialog; 
import android.content.Context; 
import android.content.DialogInterface; 
import android.content.Intent; 
import android.media.MediaCas; 
import android.net.ConnectivityManager; 
import android.net.NetworkInfo; 
import android.net.wifi.SupplicantState; 
import android.net.wifi.WifiConfiguration; 
import android.net.wifi.WifiInfo; 
import android.net.wifi.WifiManager; 
import android.os.AsyncTask; 
import android.os.Build; 
import android.os.Bundle; 
import android.provider.Settings; 
import android.support.design.widget.Snackbar; 
import android.support.v4.app.Fragment; 
import android.telephony.PhoneNumberFormattingTextWatcher; 
import android.telephony.PhoneNumberUtils; 
import android.util.Log; 
import android.view.Gravity; 
import android.view.LayoutInflater; 
import android.view.View; 
import android.view.ViewGroup; 
import android.view.animation.Animation; 
import android.view.animation.AnimationUtils; 
import android.view.inputmethod.InputMethodManager; 
import android.widget.Button; 
import android.widget.CheckedTextView; 
import android.widget.EditText; 
import android.widget.ListView; 
import android.widget.ProgressBar; 
import android.widget.RelativeLayout; 
import android.widget.TextView; 
import android.widget.Toast; 
 
import com.facebook.shimmer.ShimmerFrameLayout; 
import com.jcraft.jsch.ChannelExec; 
import com.jcraft.jsch.JSch; 
import com.jcraft.jsch.Session; 
 
import org.json.JSONObject; 
import org.w3c.dom.Text; 
 
import java.io.ByteArrayOutputStream; 
import java.io.InputStream; 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Properties; 
import java.util.Timer; 
import java.util.TimerTask; 
import java.util.concurrent.ExecutionException; 
 
import fr.castorflex.android.smoothprogressbar.SmoothProgressBar; 

Fig. 37. Pseudocode For Mobile App & Event Notification Page 11



42

import fr.castorflex.android.smoothprogressbar.SmoothProgressDrawable; 
 
/** 
 * Created by khalil on 12/22/17. 
 */ 
 
public class Fragment2 extends Fragment { 
    private RelativeLayout mSettings; 
    private Button mButton; 
    private Button mCollisionButton; 
    private Button mTiltButton; 
    private Button mGPSButton; 
    private Button mStepButton; 
    private Button mConnectButton; 
    private Button mIconButton; 
    private Toast mToast; 
    private EditText mPhonenum; 
    private EditText mCommand; 
    private ShimmerFrameLayout mShimmerFrameLayout; 
 
    private String command; 
    private boolean isInitialized = false; 
    private boolean firstRun = true; 
 
    private ProgressDialog mProgress; 
    private ProgressBar mConnectionProgress; 
    private ProgressBar mProgressBar; 
    private ProgressBar mCollisionProgress; 
    private ProgressBar mTiltProgress; 
    private ProgressBar mGPSProgress; 
    private ProgressBar mStepProgress; 
 
    private Timer mTimer; 
    private TextView mConnection; 
    private TextView mCollisionStatus; 
    private TextView mTiltStatus; 
    private TextView mGPSStatus; 
    private TextView mStepStatus; 
    private ShimmerFrameLayout mPressConnect; 
    private String mPhoneFile = "/home/pi/Desktop/everyone/vals/phone.txt"; 
    private String mCollisionFile = "/home/pi/Desktop/everyone/vals/collision.txt"; 
    private String mTiltFile = "/home/pi/Desktop/everyone/vals/tilt.txt"; 
    private String mGPSFile = "/home/pi/Desktop/everyone/vals/gps.txt"; 
    private String mStepFile = "/home/pi/Desktop/everyone/vals/step.txt"; 
    private String mSoundEnabled = "mpg123 /home/pi/Desktop/everyone/audio/sound.mp3"; 
    private String mCollisionEnabled = "mpg123 /home/pi/Desktop/everyone/audio/collision_enabled.mp3"; 
    private String mCollisionDisabled = "mpg123 /home/pi/Desktop/everyone/audio/collision_disabled.mp3"; 
    private String mTiltEnabled = "mpg123 /home/pi/Desktop/everyone/audio/tilt_enabled.mp3"; 
    private String mTiltDisabled = "mpg123 /home/pi/Desktop/everyone/audio/tilt_disabled.mp3"; 
    private String mGPSEnabled = "mpg123 /home/pi/Desktop/everyone/audio/gps_enabled.mp3"; 
    private String mGPSDisabled = "mpg123 /home/pi/Desktop/everyone/audio/gps_disabled.mp3"; 
    private String mStepEnabled = "mpg123 /home/pi/Desktop/everyone/audio/step_enabled.mp3"; 
    private String mStepDisabled = "mpg123 /home/pi/Desktop/everyone/audio/step_disabled.mp3"; 
    private String mPhoneUpdated = "mpg123 /home/pi/Desktop/everyone/audio/phone_updated.mp3"; 
 
    @Override 
    public void setUserVisibleHint(boolean isVisibleToUser) { 
        super.setUserVisibleHint(isVisibleToUser); 
        if (isVisibleToUser){ 
 
            if (mTimer == null && isInitialized) { 
                System.out.println("STARTING FRAGMENT 2 TIMER"); 
                connectionTimer(); 
            } 
        }else{ 
            if (mTimer != null) { 
                System.out.println("STOPPING FRAGMENT 2 TIMER"); 
                mTimer.purge(); 

Fig. 38. Pseudocode For Mobile App & Event Notification Page 12



43

                mTimer.cancel(); 
                mTimer = null; 
                firstRun = true; 
            } 
        } 
    } 
 
    private void fadeOut() { 
        Animation bottomDown = AnimationUtils.loadAnimation(getContext(), 
                R.anim.alpha_r); 
        bottomDown.setAnimationListener(new Animation.AnimationListener() { 
            @Override 
            public void onAnimationStart(Animation animation) { 
 
            } 
 
            @Override 
            public void onAnimationEnd(Animation animation) { 
                animateButtonUp(); 
            } 
 
            @Override 
            public void onAnimationRepeat(Animation animation) { 
 
            } 
        }); 
        mSettings.startAnimation(bottomDown); 
        mSettings.setVisibility(View.INVISIBLE); 
    } 
 
    private void animateButtonUp() { 
        Animation bottomUp = AnimationUtils.loadAnimation(getContext(), 
                R.anim.alpha); 
        bottomUp.setAnimationListener(new Animation.AnimationListener() { 
            @Override 
            public void onAnimationStart(Animation animation) { 
 
            } 
 
            @Override 
            public void onAnimationEnd(Animation animation) { 
            } 
 
            @Override 
            public void onAnimationRepeat(Animation animation) { 
 
            } 
        }); 
        mIconButton.startAnimation(bottomUp); 
        mPressConnect.startAnimation(bottomUp); 
        mPressConnect.setVisibility(View.VISIBLE); 
        mIconButton.setVisibility(View.VISIBLE); 
    } 
 
    private void pullSettings(){ 
        List<String> settings = new ArrayList<String>(); 
 
    } 
 
 
    private void connectionTimer() { 
        mTimer = new Timer(); 
 
        mTimer.scheduleAtFixedRate(new TimerTask() { 
            public void run() { 
                if(isVisible()) { 
                    new Thread(new Runnable() { 
                        @Override 

Fig. 39. Pseudocode For Mobile App & Event Notification Page 13



44

                        public void run() { 
                            if (!isConnected()) { 
                                getActivity().runOnUiThread(new Runnable() { 
                                    @Override 
                                    public void run() { 
                                        mConnection.setText("STATUS: DISCONNECTED"); 
                                        mConnectButton.setTag("off"); 
                                        mPhonenum.setFocusableInTouchMode(false); 
                                        mPhonenum.setText(""); 
                                        mPhonenum.setAlpha(0.5f); 
                                        
mCollisionButton.setBackgroundResource(R.drawable.collision_button_off); 
                                        mCollisionStatus.setText(""); 
                                        mTiltButton.setBackgroundResource(R.drawable.tilt_button_off); 
                                        mTiltStatus.setText(""); 
                                        mGPSButton.setBackgroundResource(R.drawable.gps_button_off); 
                                        mGPSStatus.setText(""); 
                                        mStepButton.setBackgroundResource(R.drawable.step_button_off); 
                                        mStepStatus.setText(""); 
                                        //mConnectButton.setBackgroundResource(R.drawable.selector_connect); 
                                        mConnectButton.setAlpha(1f); 
                                        mConnection.setTextColor(getResources().getColor(R.color.redColor)); 
                                        mButton.setBackgroundResource(R.drawable.check_button_gray); 
                                    } 
                                }); 
                            } 
                        } 
                    }).start(); 
                } 
            } 
        }, 1000, 5000); //Length of how often to update location 
    } 
 
    @Override 
    public void onViewCreated(View view, Bundle savedInstanceState){ 
        mSettings = getActivity().findViewById(R.id.settings_view); 
        mSettings.setVisibility(View.INVISIBLE); 
        mIconButton = getActivity().findViewById(R.id.icon_button); 
        mButton = getActivity().findViewById(R.id.phone_check); 
        mCollisionButton = getActivity().findViewById(R.id.collision_button); 
        mTiltButton = getActivity().findViewById(R.id.tilt_button); 
        mGPSButton = getActivity().findViewById(R.id.gps_button); 
        mStepButton = getActivity().findViewById(R.id.step_button); 
        mConnectButton = getActivity().findViewById(R.id.connect_button); 
        mPhonenum = getActivity().findViewById(R.id.phone_number); 
        mPhonenum.addTextChangedListener(new PhoneNumberFormattingTextWatcher()); 
        mPhonenum.setBackgroundResource(R.drawable.selector_textwindow); 
        mConnection = getActivity().findViewById(R.id.link_status); 
        mConnectionProgress = getActivity().findViewById(R.id.connection_progress); 
        mProgressBar = getActivity().findViewById(R.id.connection); 
        mCollisionProgress = getActivity().findViewById(R.id.collision_progress); 
        mTiltProgress = getActivity().findViewById(R.id.tilt_progress); 
        mGPSProgress = getActivity().findViewById(R.id.gps_progress); 
        mStepProgress = getActivity().findViewById(R.id.step_progress); 
        mCollisionStatus = getActivity().findViewById(R.id.collision_status); 
        mTiltStatus = getActivity().findViewById(R.id.tilt_status); 
        mGPSStatus = getActivity().findViewById(R.id.gps_status); 
        mStepStatus = getActivity().findViewById(R.id.step_status); 
        mShimmerFrameLayout = getActivity().findViewById(R.id.shimmer_icon); 
        mPressConnect = getActivity().findViewById(R.id.shimmer_text); 
        mPressConnect.startShimmerAnimation(); 
 
 
        mProgressBar.setVisibility(View.INVISIBLE); 
        mConnectionProgress.setVisibility(View.INVISIBLE); 
        mCollisionProgress.setVisibility(View.INVISIBLE); 
        mTiltProgress.setVisibility(View.INVISIBLE); 
        mGPSProgress.setVisibility(View.INVISIBLE); 

Fig. 40. Pseudocode For Mobile App & Event Notification Page 14



45

        mStepProgress.setVisibility(View.INVISIBLE); 
 
        mIconButton.setBackgroundResource(R.drawable.selector_icon_button); 
        mButton.setBackgroundResource(R.drawable.selector_save_config); 
        mCollisionButton.setBackgroundResource(R.drawable.collision_button_off); 
        mTiltButton.setBackgroundResource(R.drawable.tilt_button_off); 
        mGPSButton.setBackgroundResource(R.drawable.gps_button_off); 
        mStepButton.setBackgroundResource(R.drawable.step_button_off); 
        mConnectButton.setBackgroundResource(R.drawable.selector_connect); 
        mConnection.setText("STATUS: DISCONNECTED"); 
        mPhonenum.setFocusableInTouchMode(false); 
        mConnection.setTextColor(getResources().getColor(R.color.redColor)); 
 
        mCollisionButton.setTag("on"); 
        mTiltButton.setTag("on"); 
        mGPSButton.setTag("on"); 
        mStepButton.setTag("on"); 
        mConnectButton.setTag("off"); 
 
 
        mProgress = new ProgressDialog(getActivity()); 
        mProgress.setMessage("Updating settings..."); 
 
        mIconButton.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View view) { 
                if(!isConnected()){ 
                    displayDialog(); 
                } else { 
                    animateDown(); 
                } 
 
            } 
        }); 
        mButton.setOnClickListener(new View.OnClickListener() { 
            public void onClick(View v) { 
                String connection = mConnection.getText().toString(); 
                String phoneNum = mPhonenum.getText().toString(); 
                if(!connection.contains("DISCONNECTED")){ 
                    if(phoneNum.length() != 10) { 
                        mPhonenum.setText(""); 
                        toastMessage("Invalid Phone Number Length!"); 
                    }else { 
                        sendCommand("echo '" + phoneNum + "' > " + mPhoneFile + "; " + mPhoneUpdated, true, 
"update_setting", "mPhonenum", false); 
                    } 
                } else { 
                    notConnectedAlert(); 
                } 
            } 
        }); 
 
        mCollisionButton.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                String connection = mConnection.getText().toString(); 
                if(!connection.contains("DISCONNECTED")) { 
                    String result; 
 
                    if (mCollisionButton.getTag().equals("on")) { 
                        sendCommand("echo '0' > " + mCollisionFile + "; " + mCollisionDisabled, true, 
"update_setting", "mCollision", false); 
                    } 
                    else { 
                        sendCommand("echo '1' > " + mCollisionFile + "; " + mCollisionEnabled, true, 
"update_setting", "mCollision", false); 
                    } 
                } else { 

Fig. 41. Pseudocode For Mobile App & Event Notification Page 15



46

                    notConnectedAlert(); 
                } 
            } 
        }); 
 
        mTiltButton.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                String connection = mConnection.getText().toString(); 
                if(!connection.contains("DISCONNECTED")) { 
                    String result; 
 
                    if (mTiltButton.getTag().equals("on")) { 
                        sendCommand("echo '0' > " + mTiltFile + "; " + mTiltDisabled, true, "update_setting", 
"mTilt", false); 
                    } 
                    else { 
                        sendCommand("echo '1' > " + mTiltFile + "; " + mTiltEnabled, true, "update_setting", 
"mTilt", false); 
                    } 
                } else { 
                    notConnectedAlert(); 
                } 
            } 
        }); 
 
        mGPSButton.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                String connection = mConnection.getText().toString(); 
                if(!connection.contains("DISCONNECTED")) { 
                    String result; 
 
                    if (mGPSButton.getTag().equals("on")) { 
                        sendCommand("echo '0' > " + mGPSFile + "; " + mGPSDisabled, true, "update_setting", 
"mRealtime", false); 
                    } 
                    else { 
                        sendCommand("echo '1' > " + mGPSFile + "; " + mGPSEnabled, true, "update_setting", 
"mRealtime", false); 
                    } 
                } else { 
                    notConnectedAlert(); 
                } 
            } 
        }); 
 
        mStepButton.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                String connection = mConnection.getText().toString(); 
                if(!connection.contains("DISCONNECTED")) { 
                    String result; 
 
                    if (mStepButton.getTag().equals("on")) { 
                        sendCommand("echo '0' > " + mStepFile + "; " + mStepDisabled, true, "update_setting", 
"mStep", false); 
                    } 
                    else { 
                        sendCommand("echo '1' > " + mStepFile + "; " + mStepEnabled, true, "update_setting", 
"mStep", false); 
                    } 
                } else { 
                    notConnectedAlert(); 
                } 
            } 
        }); 
 

Fig. 42. Pseudocode For Mobile App & Event Notification Page 16



47

        mConnectButton.setOnClickListener(new View.OnClickListener(){ 
            @Override 
            public void onClick(View v) { 
                if(mConnectButton.getTag().equals("off")){ 
                    displayDialog(); 
                } else { 
                    Snackbar.make(getView(), "Already Connected!", Snackbar.LENGTH_SHORT).show(); 
                } 
            } 
        }); 
 
        mPhonenum.setOnFocusChangeListener(new View.OnFocusChangeListener() { 
            @Override 
            public void onFocusChange(View v, boolean hasFocus) { 
                if (!hasFocus) { 
                    hideKeyboard(v); 
                } 
            } 
 
        }); 
 
         
 
        mPhonenum.setOnClickListener(new View.OnClickListener(){ 
            @Override 
            public void onClick(View v) { 
                if(mConnectButton.getTag().equals("off")) 
                    notConnectedAlert(); 
            } 
        }); 
 
        isInitialized = true; 
        //if(!isConnected()) 
        //    displayDialog(); 
    } 
 
    public void animateUp(){ 
        Animation bottomUp = AnimationUtils.loadAnimation(getContext(), 
                R.anim.alpha); 
        bottomUp.setAnimationListener(new Animation.AnimationListener() { 
            @Override 
            public void onAnimationStart(Animation animation) { 
 
            } 
 
            @Override 
            public void onAnimationEnd(Animation animation) { 
                if (mTimer == null && isInitialized) { 
                    System.out.println("STARTING FRAGMENT 2 TIMER"); 
                    connectionTimer(); 
                } 
            } 
 
            @Override 
            public void onAnimationRepeat(Animation animation) { 
 
            } 
        }); 
        mSettings.startAnimation(bottomUp); 
        mSettings.setVisibility(View.VISIBLE); 
    } 
 
    public void animateDown(){ 
        Animation bottomDown = AnimationUtils.loadAnimation(getContext(), 
                R.anim.alpha_r); 
        bottomDown.setAnimationListener(new Animation.AnimationListener() { 
            @Override 
            public void onAnimationStart(Animation animation) { 

Fig. 43. Pseudocode For Mobile App & Event Notification Page 1



48

 
            } 
 
            @Override 
            public void onAnimationEnd(Animation animation) { 
                mIconButton.setVisibility(View.INVISIBLE); 
                mPressConnect.setVisibility(View.INVISIBLE); 
                establishConnection(); 
            } 
 
            @Override 
            public void onAnimationRepeat(Animation animation) { 
 
            } 
        }); 
        mIconButton.startAnimation(bottomDown); 
        mPressConnect.startAnimation(bottomDown); 
    } 
 
    private void establishConnection() { 
        mConnectionProgress.setVisibility(View.VISIBLE); 
        mConnectionProgress.setTag("Connecting"); 
        connectionTimer(); 
    } 
 
    private void notConnectedAlert() { 
        AlertDialog.Builder alert = new AlertDialog.Builder(getContext(), 
android.R.style.Theme_Material_Dialog_Alert); 
        alert.setTitle("Not Connected to Powered Wheelchair"); 
        alert.setMessage("You are not connected to the powered wheelchair. Dismiss this dialog and tap the 
'Connect to Wheelchair' button below to connect."); 
        alert.setPositiveButton("OK",null); 
        alert.show(); 
    } 
 
    public void hideKeyboard(View view) { 
        InputMethodManager inputMethodManager 
=(InputMethodManager)getActivity().getSystemService(MainActivity.INPUT_METHOD_SERVICE); 
        inputMethodManager.hideSoftInputFromWindow(view.getWindowToken(), 0); 
    } 
 
    @Override 
    public View onCreateView(LayoutInflater inflater, ViewGroup container, 
                             Bundle savedInstanceState){ 
        View v = inflater.inflate(R.layout.fragment2_layout, container, false); 
 
        //Initialize the views 
        //Pull Bitcoin-USD Data 
        //Pull Ticker Data 
        //Convert Ticker share to bitcoin shares, then bitcoin shares to USD 
        return v; 
    } 
 
    public String executeRemoteCommand( 
            String username, 
            String password, 
            String hostname, 
            int port, boolean getOutput) throws Exception { 
 
        String output = ""; 
        final String output2; 
 
        JSch jsch = new JSch(); 
        Session session = jsch.getSession(username, hostname, port); 
        session.setPassword(password); 
        session.setConfig("StrictHostKeyChecking", "no"); 
        session.setTimeout(5000); 
        session.connect(); 

Fig. 44. Pseudocode For Mobile App & Event Notification Page 18



49

        ChannelExec channel = (ChannelExec)session.openChannel("exec"); 
        channel.setCommand(command); 
        channel.connect(); 
        if(getOutput) { 
            //Thread.sleep(1000); 
            InputStream in = channel.getInputStream(); 
            byte[] tmp = new byte[1024]; 
            while (true) { 
                while (in.available() > 0) { 
                    mProgress.setMessage("Receiving data ..."); 
                    int i = in.read(tmp, 0, 1024); 
                    if (i < 0) break; 
                    output += (new String(tmp, 0, i)); 
                } 
                if (channel.isClosed()) { 
                    if (in.available() > 0) continue; 
                    output2 = output; 
                    getActivity().runOnUiThread(new Runnable() { 
                        @Override 
                        public void run() { 
                            //toastMessage(output2); 
                        } 
                    }); 
                    System.out.println("exit-status: " + channel.getExitStatus()); 
                    break; 
                } 
                try { 
                    Thread.sleep(100); 
                } catch (Exception ee) { 
                } 
            } 
            channel.disconnect(); 
        } else { 
            channel.disconnect(); 
            return "Success!"; 
        } 
 
        return output; 
        // show success in UI with a snackbar alternatively use a toast 
    } 
 
    private void toastMessage(final String message){ 
        getActivity().runOnUiThread(new Runnable() { 
            @Override 
            public void run() { 
                if(mToast!=null) 
                    mToast.cancel(); 
                mToast = Toast.makeText(getActivity(), message, Toast.LENGTH_SHORT); 
                mToast.setGravity(Gravity.CENTER_HORIZONTAL,0,900); 
                mToast.show(); 
            } 
        }); 
    } 
 
    private void sendCommand(final String cmd, final Boolean display, final String purpose, final String 
setting, final boolean getOutput){ 
        String result; 
                new AsyncTask<String, Void, String>(){ 
                    String result; 
                    @Override 
                    protected String doInBackground(String... params) { 
                        try { 
                            command = params[0]; 
                            result = executeRemoteCommand("pi", "Dvdboxset890", "192.168.42.1", 22, 
getOutput); 
                            //toastMessage(executeRemoteCommand("pi", "raspberry", "192.168.42.1", 22)); 
                        } catch (Exception e) { 
                            e.printStackTrace(); 

Fig. 45. Pseudocode For Mobile App & Event Notification Page 19



50

                            result = "Failed!"; 
                            System.out.println("Failed!!!!!"); 
                        } 
                        return result; 
                    } 
 
                    @Override 
                    protected void onPostExecute(String result) { 
                        super.onPostExecute(result); 
                        mProgressBar.setVisibility(View.INVISIBLE); 
 
                        if (purpose.equals("get_settings")) { 
                            if(firstRun){ 
                                mProgress.hide(); 
                                firstRun = false; 
                            } 
                            if(result != null) 
                                System.out.println("RESULT IS : " + result); 
                            if((result == null || result.contains("Failed")) && isVisible()) { 
                                mConnection.setText("STATUS: DISCONNECTED"); 
                                mConnectButton.setTag("off"); 
                                mPhonenum.setFocusableInTouchMode(false); 
                                mPhonenum.setText(""); 
                                mPhonenum.setAlpha(0.5f); 
                                mCollisionButton.setBackgroundResource(R.drawable.collision_button_off); 
                                mCollisionStatus.setText(""); 
                                mTiltButton.setBackgroundResource(R.drawable.tilt_button_off); 
                                mTiltStatus.setText(""); 
                                mGPSButton.setBackgroundResource(R.drawable.gps_button_off); 
                                mGPSStatus.setText(""); 
                                mStepButton.setBackgroundResource(R.drawable.step_button_off); 
                                mStepStatus.setText(""); 
                                //mConnectButton.setBackgroundResource(R.drawable.selector_connect); 
                                mConnectButton.setAlpha(1f); 
                                mConnection.setTextColor(getResources().getColor(R.color.redColor)); 
                                mButton.setBackgroundResource(R.drawable.check_button_gray); 
                            } 
                            else if (isVisible()) { 
                                mConnection.setText("STATUS: CONNECTED"); 
                                mConnectionProgress.setVisibility(View.INVISIBLE); 
                                mConnectButton.setTag("on"); 
                                mPhonenum.setFocusableInTouchMode(true); 
                                mPhonenum.setAlpha(1f); 
                                //mConnectButton.setBackgroundResource(R.drawable.connect_button_gray); 
                                mConnectButton.setAlpha(0f); 
                                mConnection.setTextColor(getResources().getColor(R.color.green)); 
                                mButton.setBackgroundResource(R.drawable.selector_save_config); 
                                updateSettings(result); 
                                if(mConnectionProgress.getTag() != null && 
mConnectionProgress.getTag().equals("Connecting")) 
                                    animateUp(); 
                                mConnectionProgress.setTag("Connected"); 
                            } 
                        } else if (!result.contains("Failed")){ 
                            if(setting.equals("mTilt")){ 
                                if (mTiltButton.getTag().equals("on")) { 
                                    mTiltButton.setBackgroundResource(R.drawable.tilt_button_off); 
                                    mTiltButton.setTag("off"); 
                                    mTiltStatus.setText("DISABLED"); 
                                    mTiltStatus.setTextColor(getResources().getColor(R.color.redColor)); 
                                } 
                                else { 
                                    mTiltButton.setBackgroundResource(R.drawable.selector_tilt); 
                                    mTiltButton.setTag("on"); 
                                    mTiltStatus.setText("ENABLED"); 
                                    mTiltStatus.setTextColor(getResources().getColor(R.color.green)); 
                                } 
                                mTiltProgress.setVisibility(View.INVISIBLE); 

Fig. 46. Pseudocode For Mobile App & Event Notification Page 20



51

                            } else if (setting.equals("mCollision")){ 
                                if (mCollisionButton.getTag().equals("on")) { 
                                    mCollisionButton.setBackgroundResource(R.drawable.collision_button_off); 
                                    mCollisionButton.setTag("off"); 
                                    mCollisionStatus.setText("DISABLED"); 
                                    mCollisionStatus.setTextColor(getResources().getColor(R.color.redColor)); 
                                } 
                                else { 
                                    mCollisionButton.setBackgroundResource(R.drawable.selector_collision); 
                                    mCollisionButton.setTag("on"); 
                                    mCollisionStatus.setText("ENABLED"); 
                                    mCollisionStatus.setTextColor(getResources().getColor(R.color.green)); 
                                } 
                                mCollisionProgress.setVisibility(View.INVISIBLE); 
                            } else if (setting.equals("mRealtime")){ 
                                if (mGPSButton.getTag().equals("on")) { 
                                    mGPSButton.setBackgroundResource(R.drawable.gps_button_off); 
                                    mGPSButton.setTag("off"); 
                                    mGPSStatus.setText("DISABLED"); 
                                    mGPSStatus.setTextColor(getResources().getColor(R.color.redColor)); 
                                } 
                                else { 
                                    mGPSButton.setBackgroundResource(R.drawable.selector_gps); 
                                    mGPSButton.setTag("on"); 
                                    mGPSStatus.setText("ENABLED"); 
                                    mGPSStatus.setTextColor(getResources().getColor(R.color.green)); 
                                } 
                                mGPSProgress.setVisibility(View.INVISIBLE); 
                            } else if (setting.equals("mStep")){ 
                                if (mStepButton.getTag().equals("on")) { 
                                    mStepButton.setBackgroundResource(R.drawable.step_button_off); 
                                    mStepButton.setTag("off"); 
                                    mStepStatus.setText("DISABLED"); 
                                    mStepStatus.setTextColor(getResources().getColor(R.color.redColor)); 
                                } 
                                else { 
                                    mStepButton.setBackgroundResource(R.drawable.selector_step); 
                                    mStepButton.setTag("on"); 
                                    mStepStatus.setText("ENABLED"); 
                                    mStepStatus.setTextColor(getResources().getColor(R.color.green)); 
                                } 
                                mStepProgress.setVisibility(View.INVISIBLE); 
                            } else if(setting.equals("mPhonenum")){ 
                                mProgress.hide(); 
                                toastMessage("Updated Phone Number"); 
                            } 
                        } else { 
                            toastMessage("Failed to update setting!"); 
                            if(setting.equals("mTilt")){ 
                                mTiltProgress.setVisibility(View.INVISIBLE); 
                            } else if (setting.equals("mCollision")){ 
                                mCollisionProgress.setVisibility(View.INVISIBLE); 
                            } else if (setting.equals("mRealtime")){ 
                                mGPSProgress.setVisibility(View.INVISIBLE); 
                            } else if (setting.equals("mStep")){ 
                                mStepProgress.setVisibility(View.INVISIBLE); 
                            } else if(setting.equals("mPhonenum")){ 
                                mProgress.hide(); 
                            } 
 
                        } 
                        if(display) { 
                            mProgress.setMessage("Retrieving settings..."); 
                            getActivity().runOnUiThread(new Runnable() { 
                                @Override 
                                public void run() { 
                                    mProgress.hide(); 
                                } 

Fig. 47. Pseudocode For Mobile App & Event Notification Page 21



52

                            }); 
                        } 
                    } 
 
                    @Override 
                    protected void onPreExecute() { 
                        super.onPreExecute(); 
                        if(display){ 
                            if (purpose.equals("get_settings")) 
                                mProgress.setMessage("Updating settings..."); 
                            else 
                                mProgress.setMessage("Sending to Wheelchair..."); 
                            getActivity().runOnUiThread(new Runnable() { 
                                @Override 
                                public void run() { 
                                    if(purpose.equals("get_settings")){ 
                                        if(firstRun){ 
                                            mProgress.setMessage("Checking connection status..."); 
                                            mProgress.show(); 
                                        } 
                                    } 
                                    if(setting.equals("mCollision")){ 
                                        mCollisionProgress.setVisibility(View.VISIBLE); 
                                    } else if (setting.equals("mTilt")){ 
                                        mTiltProgress.setVisibility(View.VISIBLE); 
                                    } else if (setting.equals("mRealtime")){ 
                                        mGPSProgress.setVisibility(View.VISIBLE); 
                                    } else if (setting.equals("mStep")){ 
                                        mStepProgress.setVisibility(View.VISIBLE); 
                                    } else if (setting.equals("mPhonenum")){ 
                                        mProgress.setMessage("Updating Phone Number..."); 
                                        mProgress.show(); 
                                    } 
                                } 
                            }); 
                        } 
                    } 
 
                }.execute(cmd); 
    } 
 
    public boolean isConnected(){ 
        String ssid; 
 
        WifiManager wifiManager = (WifiManager) 
getActivity().getApplicationContext().getSystemService(Context.WIFI_SERVICE); 
        WifiInfo wifiInfo = wifiManager.getConnectionInfo(); 
 
        if (wifiInfo.getSupplicantState() == SupplicantState.COMPLETED) { 
            ssid = wifiInfo.getSSID(); 
            System.out.println("SSID " + ssid); 
            if(ssid.toLowerCase().contains("smartwheelchair")) { 
                //updateSettings(); 
                command = "echo \"$(</home/pi/Desktop/everyone/vals/collision.txt)\"; echo 
\"$(</home/pi/Desktop/everyone/vals/tilt.txt)\"; echo \"$(</home/pi/Desktop/everyone/vals/gps.txt)\"; echo 
\"$(</home/pi/Desktop/everyone/vals/step.txt)\"; echo \"$(</home/pi/Desktop/everyone/vals/phone.txt)\""; 
                sendCommand(command, false, "get_settings", "null", true); 
                return true; 
            } 
        } 
        return false; 
    } 
 
    public class spinProgressBar extends AsyncTask<Void, Void, Void> { 
 
        /** 
         * Background task to sleep a thread for 1 second while the 
         * progress circle spins. 

Fig. 48. Pseudocode For Mobile App & Event Notification Page 22



53

         * upon successful check-in. 
         * @param args no parameters needed for this task. 
         * @return null 
         */ 
        @Override 
        protected Void doInBackground(Void... args) { 
            try { 
                Thread.sleep(1000); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
            return null; 
        } 
 
        /** 
         * After waiting one second, hide the progress circle. 
         */ 
        @Override 
        protected void onPostExecute(Void result) { 
            mProgressBar.setVisibility(View.INVISIBLE); 
            super.onPostExecute(result); 
        } 
 
        /** 
         * Make the progress circle animation visible to 
         * the user. 
         */ 
        @Override 
        protected void onPreExecute() { 
            super.onPreExecute(); 
            mProgressBar.setVisibility(View.VISIBLE); 
        } 
    } 
 
    private void updateSettings(String result) { 
        String[] settings = new String[6]; 
        settings[0] = (result.split("\n")[0]); 
        settings[1] = (result.split("\n")[1]); 
        settings[2] = (result.split("\n")[2]); 
        settings[3] = (result.split("\n")[3]); 
        settings[4] = (result.split("\n")[4]); 
 
        if (settings[0].equals("0")) { 
            mCollisionButton.setBackgroundResource(R.drawable.collision_button_off); 
            mCollisionButton.setTag("off"); 
            mCollisionStatus.setText("DISABLED"); 
            mCollisionStatus.setTextColor(getResources().getColor(R.color.redColor)); 
        } else { 
            mCollisionButton.setBackgroundResource(R.drawable.selector_collision); 
            mCollisionButton.setTag("on"); 
            mCollisionStatus.setText("ENABLED"); 
            mCollisionStatus.setTextColor(getResources().getColor(R.color.green)); 
        } 
        if (settings[1].equals("0")) { 
            mTiltButton.setBackgroundResource(R.drawable.tilt_button_off); 
            mTiltButton.setTag("off"); 
            mTiltStatus.setText("DISABLED"); 
            mTiltStatus.setTextColor(getResources().getColor(R.color.redColor)); 
        } else { 
            mTiltButton.setBackgroundResource(R.drawable.selector_tilt); 
            mTiltButton.setTag("on"); 
            mTiltStatus.setText("ENABLED"); 
            mTiltStatus.setTextColor(getResources().getColor(R.color.green)); 
        } 
        if (settings[2].equals("0")) { 
            mGPSButton.setBackgroundResource(R.drawable.gps_button_off); 
            mGPSButton.setTag("off"); 
            mGPSStatus.setText("DISABLED"); 

Fig. 49. Pseudocode For Mobile App & Event Notification Page 23



54

            mGPSStatus.setTextColor(getResources().getColor(R.color.redColor)); 
        } else { 
            mGPSButton.setBackgroundResource(R.drawable.selector_gps); 
            mGPSButton.setTag("on"); 
            mGPSStatus.setText("ENABLED"); 
            mGPSStatus.setTextColor(getResources().getColor(R.color.green)); 
        } 
 
        if (settings[3].equals("0")) { 
            mStepButton.setBackgroundResource(R.drawable.step_button_off); 
            mStepButton.setTag("off"); 
            mStepStatus.setText("DISABLED"); 
            mStepStatus.setTextColor(getResources().getColor(R.color.redColor)); 
        } else { 
            mStepButton.setBackgroundResource(R.drawable.selector_step); 
            mStepButton.setTag("on"); 
            mStepStatus.setText("ENABLED"); 
        } 
 
        if(!mPhonenum.hasFocus()) 
            mPhonenum.setText(settings[4]); 
    } 
 
    public void connectWifi(){ 
        //final String CAPTIVE_PORTAL_DETECTION_ENABLED = "captive_portal_detection_enabled"; 
        //Settings.Global.putInt(getActivity().getContentResolver(), CAPTIVE_PORTAL_DETECTION_ENABLED, 0); 
 
        String ssid = "SmartWheelchair-3"; 
        String key = "smart123"; 
        toastMessage("HERE"); 
 
        WifiConfiguration wifiConfig = new WifiConfiguration(); 
        wifiConfig.allowedAuthAlgorithms.set(WifiConfiguration.AuthAlgorithm.OPEN); 
        wifiConfig.SSID = String.format("\"%s\"", ssid); 
        wifiConfig.preSharedKey = String.format("\"%s\"", key); 
 
        WifiManager wifiManager = (WifiManager) 
getActivity().getApplicationContext().getSystemService(Context.WIFI_SERVICE); 
        if(!wifiManager.isWifiEnabled()) { 
            wifiManager.setWifiEnabled(true); 
        } 
        wifiManager.disconnect(); 
        displayDialog(); 
//remember id 
        //int netId = wifiManager.addNetwork(wifiConfig); 
        //wifiManager.enableNetwork(netId, false); 
    } 
 
    @Override 
    public void onActivityResult(int requestCode, int resultCode, Intent intent) 
    { 
        if(requestCode==0) 
        { 
            WifiManager wifiManager = (WifiManager) 
getActivity().getApplicationContext().getSystemService(Context.WIFI_SERVICE); 
            if(wifiManager.isWifiEnabled() && 
wifiManager.getConnectionInfo().getSSID().toString().toLowerCase().contains("smartwheelchair")){ 
                final Intent intent2 = new Intent(getContext(), MainActivity.class); 
                startActivity(intent2); 
            } 
            //restart Application here 
        } 
    } 
 
    public void displayDialog(){ 
        AlertDialog.Builder builder; 
        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) { 
            builder = new AlertDialog.Builder(getContext(), android.R.style.Theme_Material_Dialog_Alert); 

Fig. 50. Pseudocode For Mobile App & Event Notification Page 24



55

        } else { 
            builder = new AlertDialog.Builder(getContext()); 
        } 
        builder.setTitle("Connect to Powered Wheelchair") 
                .setMessage("Press 'OK' to launch settings and select the Smart Wheelchair from the WiFi 
list.") 
                .setPositiveButton("Ok", new DialogInterface.OnClickListener() { 
                    public void onClick(DialogInterface dialog, int which) { 
                        startActivityForResult(new Intent(Settings.ACTION_WIFI_SETTINGS),0); 
                    } 
                }) 
                .setNegativeButton("Cancel", new DialogInterface.OnClickListener() { 
                    public void onClick(DialogInterface dialog, int which) { 
                        toastMessage("Not Connecting to wheelchair"); 
                    } 
                }) 
                .setIcon(android.R.drawable.ic_dialog_alert) 
                .setCancelable(false) 
                .show(); 
    } 
 
} 
 
================================================ 
================================================ 
======= FRAGMENT 3: CONTROL WHEELCHAIR ========= 
================================================ 
================================================ 
================================================ 
 
package khalil.smartwheelchair; 
 
import android.app.ProgressDialog; 
import android.bluetooth.BluetoothAdapter; 
import android.bluetooth.BluetoothDevice; 
import android.bluetooth.BluetoothSocket; 
import android.content.Intent; 
import android.os.Bundle; 
import android.support.v4.app.Fragment; 
import android.view.Gravity; 
import android.view.LayoutInflater; 
import android.view.MotionEvent; 
import android.view.View; 
import android.view.ViewGroup; 
import android.widget.Button; 
import android.widget.Toast; 
 
import com.google.android.gms.maps.SupportMapFragment; 
 
import java.io.IOException; 
import java.io.OutputStream; 
import java.util.Set; 
import java.util.UUID; 
 
import io.github.controlwear.virtual.joystick.android.JoystickView; 
 
public class Fragment3 extends Fragment { 
    private final String DEVICE_ADDRESS = "00:14:03:06:65:3B"; //MAC Address of Bluetooth Module 
    private final UUID PORT_UUID = UUID.fromString("00001101-0000-1000-8000-00805f9b34fb"); 
    private Toast mToast; 
    private BluetoothDevice device; 
    private JoystickView mJoystick; 
    private BluetoothSocket socket; 
    private OutputStream outputStream; 
    private ProgressDialog mProgress; 
    private Boolean btControl = false; 
 

Fig. 51. Pseudocode For Mobile App & Event Notification Page 25



56

    Button forward_btn, forward_left_btn, forward_right_btn, 
            reverse_btn, reverse_left_btn, reverse_right_btn, 
            bluetooth_connect_btn, toggle_btn; 
 
    String command = "S"; //string variable that will store value to be transmitted to the bluetooth module 
    String lastcommand; 
 
    @Override 
    public void setUserVisibleHint(boolean isVisibleToUser) { 
        super.setUserVisibleHint(isVisibleToUser); 
        if (isVisibleToUser){ 
            //connectWifi(); 
        } 
    } 
 
    @Override 
    public View onCreateView(LayoutInflater inflater, ViewGroup container, 
                             Bundle savedInstanceState){ 
        View v = inflater.inflate(R.layout.fragment3_layout, container, false); 
 
        return v; 
    } 
 
 
 
    @Override 
    public void onViewCreated(View view, Bundle savedInstanceState){ 
        //declaration of button variables 
        bluetooth_connect_btn = (Button) getActivity().findViewById(R.id.bluetooth_connect_btn); 
        bluetooth_connect_btn.setBackgroundResource(R.drawable.selector_bt_connect); 
        toggle_btn = (Button) getActivity().findViewById(R.id.toggle_btn); 
        toggle_btn.setBackgroundResource(R.drawable.selector_bt_control_off); 
        toggle_btn.setAlpha(0f); 
        mProgress = new ProgressDialog(getActivity()); 
        mJoystick = (JoystickView) getActivity().findViewById(R.id.joystick); 
        mJoystick.setAlpha(0.1f); 
 
 
        //OnTouchListener code for the forward button (button long press) 
 
 
        //Button that connects the device to the bluetooth module when pressed 
        bluetooth_connect_btn.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                mProgress.setMessage("Checking bluetooth status..."); 
                mProgress.show(); 
                new Thread(new Runnable() { 
                    @Override 
                    public void run() { 
                        if(BTinit()) 
                        { 
                            BTconnect(); 
                            //mProgress.hide(); 
                        } 
                    } 
                }).start(); 
 
            } 
        }); 
 
        mJoystick.setOnMoveListener(new JoystickView.OnMoveListener() { 
            @Override 
            public void onMove(int angle, int strength) { 
                // do whatever you want 
                if (btControl) { 
                    if (strength > 50) { 
                        if (45 < angle && angle < 135) { 

Fig. 52. Pseudocode For Mobile App & Event Notification Page 26



57

                            //FORWARD 
                            if (!command.equals("F")) { 
                                command = "F"; 
                                System.out.println("FORWARD"); 
                                sendBtCommand(command); 
                            } 
                        } else if (angle > 135 && angle < 225) { 
                            //LEFT 
                            if (!command.equals("L")) { 
                                command = "L"; 
                                System.out.println("LEFT"); 
                                sendBtCommand(command); 
                            } 
 
                        } else if (angle > 225 && angle < 315) { 
                            //DOWN 
                            if (!command.equals("B")) { 
                                command = "B"; 
                                System.out.println("BACK"); 
                                sendBtCommand(command); 
                            } 
 
                        } else if (angle > 315 || angle < 45) { 
                            //RIGHT 
                            if (!command.equals("R")) { 
                                command = "R"; 
                                System.out.println("RIGHT"); 
                                sendBtCommand(command); 
                            } 
 
                        } 
                    } else { 
                        if (!command.equals("S")) { 
                            command = "S"; 
                            System.out.println("STOP"); 
                            sendBtCommand(command); 
                        } 
                    } 
                } 
            } 
        }); 
 
        toggle_btn.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                if(btControl) 
                { 
                    command = "O"; 
                    try 
                    { 
                        if(outputStream != null) { 
                            outputStream.write(command.getBytes()); 
                            toggle_btn.setBackgroundResource(R.drawable.selector_bt_control_off); 
                            btControl = false; 
                        } 
                        else 
                            toastMessage("Please pair the device first"); 
                    } 
                    catch (IOException e) 
                    { 
                        e.printStackTrace(); 
                    } 
                } 
                else { 
                    command = "I"; 
                    try { 
                        if (outputStream != null) { 
                            outputStream.write(command.getBytes()); 

Fig. 53. Pseudocode For Mobile App & Event Notification Page 27



58

                            toggle_btn.setBackgroundResource(R.drawable.selector_bt_control_on); 
                            btControl = true; 
                            mJoystick.setAlpha(1f); 
                        } else 
                            toastMessage("Please pair the device first"); 
                    } catch (IOException e) { 
                        e.printStackTrace(); 
                    } 
 
                } 
            } 
        }); 
 
    } 
 
    private void toastMessage(final String message){ 
        getActivity().runOnUiThread(new Runnable() { 
            @Override 
            public void run() { 
                if(mToast!=null) 
                    mToast.cancel(); 
                mToast = Toast.makeText(getActivity(), message, Toast.LENGTH_SHORT); 
                mToast.setGravity(Gravity.CENTER_HORIZONTAL,0,430); 
                mToast.show(); 
            } 
        }); 
    } 
 
    //Initializes bluetooth module 
    public boolean BTinit() 
    { 
        boolean found = false; 
 
        BluetoothAdapter bluetoothAdapter = BluetoothAdapter.getDefaultAdapter(); 
 
        if(bluetoothAdapter == null) //Checks if the device supports bluetooth 
        { 
            getActivity().runOnUiThread(new Runnable() { 
                @Override 
                public void run() { 
                    mProgress.hide(); 
                } 
            }); 
            toastMessage("Device doesn't support bluetooth"); 
 
        } 
 
        if(!bluetoothAdapter.isEnabled()) //Checks if bluetooth is enabled. If not, the program will ask 
permission from the user to enable it 
        { 
            //mProgress.hide(); 
            Intent enableAdapter = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE); 
            startActivityForResult(enableAdapter,0); 
 
            try 
            { 
                Thread.sleep(1000); 
            } 
            catch(InterruptedException e) 
            { 
                e.printStackTrace(); 
            } 
        } 
 
        Set<BluetoothDevice> bondedDevices = bluetoothAdapter.getBondedDevices(); 
 
        if(bondedDevices.isEmpty()) //Checks for paired bluetooth devices 
        { 

Fig. 54. Pseudocode For Mobile App & Event Notification Page 28



59

            toastMessage("Please pair the device first"); 
        } 
        else 
        { 
            getActivity().runOnUiThread(new Runnable() { 
                @Override 
                public void run() { 
                    mProgress.setMessage("Looking for wheelchair..."); 
                } 
            }); 
            for(BluetoothDevice iterator : bondedDevices) 
            { 
                if(iterator.getAddress().equals(DEVICE_ADDRESS)) 
                { 
                    getActivity().runOnUiThread(new Runnable() { 
                        @Override 
                        public void run() { 
                            mProgress.setMessage("Connecting to bluetooth controller..."); 
                        } 
                    }); 
                    device = iterator; 
                    found = true; 
                    break; 
                } 
            } 
        } 
        if(!found) { 
            toastMessage("Device not found!"); 
        } 
        return found; 
    } 
 
    public boolean BTconnect() 
    { 
        boolean connected = true; 
 
        try 
        { 
            socket = device.createRfcommSocketToServiceRecord(PORT_UUID); //Creates a socket to handle the 
outgoing connection 
            socket.connect(); 
            getActivity().runOnUiThread(new Runnable() { 
                @Override 
                public void run() { 
                    mProgress.hide(); 
                    toastMessage("Connection to wheelchair successful!"); 
                    toggle_btn.setAlpha(1f); 
                } 
            }); 
 
        } 
        catch(IOException e) 
        { 
            getActivity().runOnUiThread(new Runnable() { 
                @Override 
                public void run() { 
                    mProgress.hide(); 
                    toggle_btn.setAlpha(0f); 
                    toastMessage("Connection to wheelchair failed, are you within range?"); 
                } 
            }); 
            e.printStackTrace(); 
            connected = false; 
        } 
 
        if(connected) 
        { 
            try 

Fig. 55. Pseudocode For Mobile App & Event Notification Page 29



60

            { 
                outputStream = socket.getOutputStream(); //gets the output stream of the socket 
            } 
            catch(IOException e) 
            { 
                e.printStackTrace(); 
            } 
        } 
 
        return connected; 
    } 
 
    @Override 
    public void onStart() 
    { 
        super.onStart(); 
    } 
 
    public void sendBtCommand(String command){ 
        try 
        { 
            if(outputStream != null) 
                outputStream.write(command.getBytes()); 
            else { 
                toastMessage("Please pair the device first"); 
            } 
        } 
        catch (IOException e) 
        { 
            e.printStackTrace(); 
        } 
    } 
 
} 
 
 
=============================================================================== 
 FONA SCRIPT CODE (RASPBERRY PI) 
=============================================================================== 
 
from time import sleep 
from decimal import Decimal 
from geopy.geocoders import Nominatim 
from ubidots import ApiClient 
import serial 
import time 
import threading 
import os 
 
geolocator = Nominatim() 
 
GPSON = 'AT+CGPSPWR=1\n' 
GPSOFF = 'AT+CGPSPWR=0\n' 
CELLON = 'AT+CMGF=1\n' 
CELLOFF = 'AT+CMGF=0\n' 
GETGPS = 'AT+CGPSINF=2\n' 
INITSMS = 'AT+CMGF=1\n' 
SENDSMS = 'AT+CMGS="%s"\n' 
HOMEDIR = '/home/pi/Desktop/everyone/vals/' 
EVENTOCCURRED = 0 
 
 
def sendSMS(ser, coordinates): 
    phoneNum = queryFile("phone.txt") 
    sendToFona(INITSMS,'OK') 
    print("\nSending SMS...\n") 
    sendToFona(SENDSMS % phoneNum, '>') # Initiate the first message 

Fig. 56. Pseudocode For Mobile App & Event Notification Page 30



61

    if(queryFile("crash.txt")): 
        msg = ("There has been an accident at the following location:" 
               "\nhttp://maps.google.com/maps?q={},{}\n".format(coordinates[0],coordinates[1]) + chr(26)) # 
Send the first message 
    else: 
        msg = ("HELP button pressed at the following location:" 
               "\nhttp://maps.google.com/maps?q={}.{}\n".format(coordinates[0],coordinates[1]) + chr(26)) 
    sendToFona(msg, 'OK') 
    sendToFona(CELLOFF, 'OK') 
    if(queryFile("help.txt")): 
        resetFile("help.txt") 
    print("SMS Sent!\n") 
 
def queryGPS(ser): 
    get_coordinates = False 
    while(not get_coordinates): 
        gps_output = sendToFona(GETGPS, '+CGPSINF:') 
        print(gps_output) 
        gps_data = gps_output.split(",") 
        try: 
            gps_list = [gps_data[2],gps_data[4]] 
            #gps_list = ["0038.5605","-0121.4231"] 
            get_coordinates = True 
        except IndexError: 
            print("Index error! Trying to get GPS again...") 
    return(gps_list) 
 
def httpPOST(ser, long, lat, var_key): 
        long = long.replace("-","").replace(".", "") 
        lat = lat.replace("-","").replace(".", "") 
        val = "1" + long + lat 
        coordinate = Decimal(val) 
        print(coordinate) 
        if(coordinate == 10000000000000000): 
            return 
        cont_len = len("%d" % coordinate) + 10 
        print(cont_len) 
        #ser.write('AT+CIPSTART="tcp","things.ubidots.com","80"\n') 
        sendToFona('AT+CIPSEND\n', '>') 
        response = ser.readline() 
        http = ('POST /api/v1.6/variables/{}/values HTTP/1.1\n'.format(var_key) 
                 + 'Content-Type: application/json\n' 
                 + 'Content-Length: {}\n'.format(cont_len) 
                 + 'X-Auth-Token: A1E-03qioilTFhKUVYB2G6nDcXHrVKioHt\n' 
                 + 'Host: things.ubidots.com\n' 
                 + '\n' 
                 + '{{"value":{}}}\n'.format(coordinate) 
                 + '\n' 
                 + chr(26)) 
        sendToFona(http, 'SEND OK') 
        sendToFona("AT\n",'OK') 
 
        #print("Buffer Issue!") 
 
def flush(): 
    global ser 
    while(ser.inWaiting() > 0): 
        print(ser.readline()) 
 
def handle(pin): 
    GPIO.remove_event_detect(33) 
    print("Fall Detected") 
    crash = True 
 
def sendToFona(command, expected): 
    global ser 
    ser.write(command) 
    result = ser.readline() 

Fig. 57. Pseudocode For Mobile App & Event Notification Page 31



62

    print(result) 
    while(not (expected in result)): 
        result = ser.readline() 
        print(result) 
        if(("CLOSED" in result) or ("CONNECT FAIL" in result)): 
            sendToFona('AT+CIPSHUT\n', 'SHUT OK') 
            sendToFona('AT+CIPSTART="tcp","things.ubidots.com","80"\n','CONNECT OK') 
            break 
    print("Matched expected response: " + result) 
    return(result) 
 
 
def queryFile(filename): 
    file = open(os.path.join(HOMEDIR, filename), "r") 
    val = int(file.read()) 
    print("READ VALUE FROM FILE: " + str(val)) 
    file.close() 
    return val 
 
 
def resetFile(filename): 
    file = open(os.path.join(HOMEDIR, filename), "w") 
    file.write("0") 
    file.close() 
 
def start(): 
    global ser 
    crash = False 
    connected = False 
    while(not connected): 
        print("Looking for FONA...") 
        try: 
            ser = serial.Serial('/dev/ttyUSB0', 115200, timeout=1) 
            connected = True 
        except serial.SerialException: 
            print("Serial Device Not Found!") 
            sleep(2) 
     
    ser.close() 
    ser.open() 
    ser.write(chr(26)) 
    sendToFona(GPSON,'OK') 
    sendToFona('AT+CSQ\n','OK') 
     
    sendToFona('AT+CIPSHUT\n', 'SHUT OK') 
    sleep(1) 
    
    sendToFona('AT+CIPSTART="tcp","things.ubidots.com","80"\n','CONNECT OK') 
 
    long_key = "59e1c4b4c03f976d8614041e" 
    lat_key = '59e1c8e6c03f977288035309' 
    notSent = True 
 
    print("Getting GPS Coordinates...\n") 
    while True: 
        coordinates = queryGPS(ser) 
        crash = queryFile("crash.txt") 
        button = queryFile("help.txt") 
        tiltEnabled = queryFile("tilt.txt") 
        gpsEnabled = queryFile("gps.txt") 
 
        if(gpsEnabled): 
            httpPOST(ser, coordinates[0], coordinates[1], long_key) 
        else: 
            sleep(1) 
        print("Coordinates: {}, {}".format(coordinates[0],coordinates[1])) 
        # Get location from coordinates 
        crash = queryFile("crash.txt") 

Fig. 58. Pseudocode For Mobile App & Event Notification Page 32



63

        if ((crash and tiltEnabled) or button): 
            print("###############################################") 
            print("########### SENDING SMS MESSAGE ###############") 
            print ("###############################################") 
            sendSMS(ser, coordinates) 
            resetFile("crash.txt") 
            #break 
    ser.close() 
start() 
 

Fig. 59. Pseudocode For Mobile App & Event Notification Page 33



64

Fig. 60. Mechanical Drawing For Box Cap



65

Fig. 61. Mechanical Drawing For Bottom of Box Cap



66

Fig. 62. Mechanical Drawing For Top of Screen Housing



67

Fig. 63. Mechanical Drawing For Bottom of Screen Housing



68

Fig. 64. Top Housing For Joystick



69

Fig. 65. Mechanical Drawing For Bottom of Screen Housing


